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PREFACE TO THE |
THIRD SWEDISHEDITION

For the individual who wishes to find out what mathematics is all
about there are no simple shortcuts. One must work with the mathemat-
ics itself. The job can be made easier if onc succeeds in finding a ciccrone
with feeling for both the subject and the innately human, a guide who
can stimulate one’s thoughts and joy of discovery. .

Bengt Ulin is such a cicerone. He has understood that mathemati-
cal discovery need not at all be seen as something for only a small exclu-
sive group of great mathematicians, whose results in polished and
suitably humble form are presented to students as “facts.” He under- ¢
stands that within mathematics there is something for cach of us to dis- 7
cover. There is then, of course, nothing new for humanity. There is, in a
sense. something more important than that, something which gives the
student true knowledge, which shows how knowledge takes form within
the student, how thinking develops, and what creativity means.

f the person who wishes to know what travel is
¢ must tread the

ding the Partb is

Just as in the case 0
all about, being presented a few facts is not enough. On
road himsclf. A good travel guide is usually a help. Fin
an excellent guide.

It ought to find a very broad readership. Within the school system

it will be useful for both active teachers and new teachers-to-be, at differ-
ent levels, as well as for many high school students. Here I am thinking
not primarily of those who go the finals in mathematical contests but
rather of a large group who might become interested in mathematics if
they only got the right stimulus. Apart from the school system 1 believe
there are many of the general public who through this book could find a
path, perhaps evena whole new hobby, in mathematics.

Bengt Ulin follows a thinking tradition which leads one to associa-
tions with George Pélya. He encourages experimentation while rgt
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forgetti It is t
Wa{};dor?gpi;z;;g,no‘:i‘zn n};s time fc.>r it. Whether this is then called
LA hav;neef mgl else 1s of no matter. Of importance is
need 1o b 1 book han m,\a.mples. showing that mathematics does not
los iy & mecha memor;‘xmgu ;non of syml?ols according to certain
< Fieation wip oy oe mem ;lzc , that mathe.mancfs can lead to other than
Secing the pa s } phenomenon which hinders the stude
oad. Finding the Path helps the reader to discover pat-

terns and strucrur
e and leads the read f
‘ eader to 1
mathematics has to offer. uch of the eavey which

nt from

It i '
Path wi]lls g’:eas’”g to note that through this new edition Findin the
e dC(;me avaxlqb!e to a larger public, and 1 can only legh I
Ny h_goo‘ uck on their tascinating journey under the en)[h b 1
adership of the very knowledgeable Bengt Ulin usnshie

Andrejs Dunkels

Professor of Mathematics

University of Luled

INTRODUCTION

The presentations in this book are built on experiences from math-
ematics teaching in the grades 7-12 at the Kristoffer School, 2 Rudolf
Steiner School, and from teaching at the Rudolf Steiner Seminar at Jaerna

(Sweden).
Visitors of the s
school exhibitions have asked many questions about the teaching in the

Waldorf school and about mathematics. Some visitors have desired

chool, of the teacher seminar, and of Waldorf

printed material.
During the evaluation of the Kristoffer School by the Swedish state

school authorities 1976/77, the question about publication of the methods
in some subjects was actualized, especially since the evaluation could not
comprise mathematics and science to an extent which had been proper.

Largely as a result of the stimulating interest of Karl-Georg
Ahlstréem, professor at the Department of Pedagogy at the University
of Uppsala and leader of the evaluation group, 1 began to collect glimpses
and experiences from the lessons.

Dr. Georg Unger, leader of the Institute for Mathematics and
Physics at Dornach, Switzerland, gave me important impulses. Ingemar
Wik (University of Umei), Hans Brolin (The High school for teachers,
Uppsala), and Sven-Erik Gode (the publishing firm -Natur och Kulrur,
Stockholm) took the trouble to read the first version. and 1 am thankful
for their advice concerning the work which was to follow.

The book is primarily written for younger mathematics teachers or
teachers-to-be. It does not offer a pedagogical collection of recipes, but
should simply give examples of how one might engage the pupils in het-
erogencous (undifferentiated) classes.

Most of the book is taken up by Chapter 3, which shows a number
of themes from the teaching. In the Waldorf school, mathemarics is
taught in all grades, during periods, every morning for some weeks dur-
ing cach period, and during fixed, weekly exercise hours.

13
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MATHEMATICS AS A PATH FOR
DEVELOPMENT OF THINKING —

PAST AND PRESENT

7.1 Foreign Cultures

rus scrolls with mathematics texts which were found in
Il developed abilities in prob\em-solving among
particularly the Rhind Papyrus and
from the Middle Kingdom
old. The Rhind Papyrus
“penetrating into

The papy
Egypt bear witness 1o we
ancient Egypt. The texts,
date back to originals
are almost 4000 years
s contents concern the art of
“knowledge of everything existing

“In actual fact the Rhind Papyrus 1s 3 collection of recipes for
requirements, distributing wages, farm field areas and
its, etc. In short, the text is a col-

an clite in
the Moscow Papyrus,
' (2000-1800 B.C.) and thus
begins by explaining that it
things™ and that it will provide
secrets.
calculating grain
storchouse volumes, conversion of un
lection of methods for the solution of v
B.L. van der Waerden believes t
ded for teaching in a school for seribes,

arious practical problems.
hese mathematical text
the royal public servants

ors and «undersecretaries” to the Pharaoh.
A limestone sculprure from the 5th dynasty of the Ancient Kingdom

(2500 B.C.), now in the Louvre, shows che intensity of concentration ofa
he sits ready to take notes. The scribe could lose his life if he

s were

inten
who were the master calculat

scribe as
made an error.
The ancient Egyptians were partic

They used the very good approximati»on

ularly successful in geometry.

4- (%)!: 3.16049...

sterly feat of calculating the volume (&A

and they performed the ma
he correct formula

forn
truncated square pyramid using t
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V=(a+ab+b).h
J

where a and b are the sides of th

. € square top and bot cti i
the height between them. P o sections and his

The Bab 1 !
roxts reva 2 tilomans}ddewlzloped algebra surprisingly far. Cuneiform
_ ¢y couid solve quadratic equati
f attons and knew of
s xe ‘ ‘ : equa new of meth-
o treating cefrta}:n third degree equations. They solved systems of
tons, even of the second d
egree, and succeeded in develop;
. . . o )
number of arithmetic formulas, including amon T for
sums of squares (see Section 3.5.6).

concept (I)xflg;o‘lme.try d:; Ba}?ylonians were well acquainted with the
tmulanty and with triplets of numbers which f. i i
. s orm right tri-
anglfs (Pythagorean numbers). They even calculated the volun ’ f ;1’
prism and the cylinder. e
b Pro&i&;:lordmg to resznrch in the history of mathematics the Greeks
Y acquainted themselves with th ! ,
Eeypinns o peguain : the mathematics of both
: abylontans. Much points to Greeks havi 1
o oy and § o 1 pe reeks having spent consid-
gypt and in the Tigris-Euphrates vall '
o opporuin i i S-Luphrates valley and there having
| y studying that which had b 3
Various accounts re “Th. emocritus md B
our, port of Thales, Pythagoras, Democri
iy : T , 3 , ocritus and Eudos
all prominent mathematicians in ancient Greece —- undertaking t(;::f

els to Egypt and Babylonia.
This in no way, h !

| | ‘ . Y, however, entitles the conclusion thar Greek

tr::;lswe;r;::zs w\z;as s_xrcr;p]y a product of what thev had found in othcrrcct:l

. er Waerden quotes Plato in the post ! a-

] Yan Va : : posthumously published dia-

ogue “Epinomis”, words which van der Waerden finds parf)icull e

g others the formula for

arly apt:

...wh i i ]
by o atever G'reeks acquire from foreigners is finally turned
Yy them into something nobler. .

What th 1
were mect e Gre;}ks could make use of in the area of mathematics
Were ods for problem-solvine. f. erence ta ‘

! L | ormulas, and ref ce 1
hony ethods g . erence tables -— in
Comc, i rh'Ecs:terons alndDda’ta. But how had the Egyptians and Babylonians
| .10 th frcsu ts? Were they reliable? Among the ancient works
! wore inco ec; ormulae and methods. For example, the Babvlonians cal-

; the volume of a truncated cone with the formula: ‘ ‘

i- ) Vo= th (R + k“') N

FOREIGN CULTURESI1?

It was the Greeks’ great service that they took the step from calcu-
lation to mathematics. They sought proofs for all of the results which
they had come upon and developed the art of problem-solving to an emi-
nent degree. They showed an impressive ability at finding constructive
methods and at developing different forms of proof when needed to give
a rigorous foundation for constructions or other methods of calculation.
Definitions, assumptions, and axioms were formulated — all with an
admirable precision.

It was Thales (ca: 600 B.C.) who brought proof into geometry.
That which he received from the East and the South were results which
had once been borne up by a living culture but which in his time existed
only as document. From these collections of formulae, Thales structures
a logical geometry. Consciousness makes its entry into mathematics:
“one knows that one knows.”

From studies of the pyramids we know that the Egypuans were
good at applying geometry, as early as 2000 B.C,; they could build geo-
metrical constructions on even the enormous scale required for the pyra-
mids. Nor were th Greeks one-sided theoreticians. The 1 kilometer long
Eupalinos tunnel through the Kastro mountain on Samos, approximately
530 B.C., containing a water channel arranged with ventilation shafts,
speaks for itself. It was dug from both directions simultancously! The
two work crews met in the middle of the mountain with an error of less
than 10 meters sideways and 3 meters vertically.

For the Greeks such practical tasks were, however, a by-product.
The important thing for them was to develop thinking. The Pythagorean
School, like Thales, attached great importance to the development of log-
ical structure in geometry and proved with the aid of parallel lines,
among other things, that the sum of angles in a triangle is 180°. They
were well acquainted with the right triangle and developed a system of
representing problems in arithmetic as geometrical problems — the
reverse of Descartes’ idea using a co-ordinate system to transtorm geo-
metrical problems into algebraic ones.

Of major importance to the Greeks were clarity and lucidity. They
were fond of summarizing a geometrical proof with a figure and the sim-
ple text: “Observe!” But for the Pythagoreans it was also a logical necessi-
tv to transform arithmetical problems into geometrical ones: they had not
mastered the irrational numbers. The Pythagoreans’ whole system of
thought was long based on the belief that all numbers are either whole or
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made up of ratios of whole numbers (we call such numbers
When the study of the square’s diagonal and the proportions i

lar pentagram led to the discovery of other “non-expressible”
Pythagorean mathematics came to a crisis.

with the aid of compass and straight
lengths corresponding to certain ir

diagonal of a square in the case of V2.
With this,

neither inherited

edge,

knowledge nor studies of the physical world w

ere of
any help. Mathematics came to be the science, where thought’s own

f sensory knowledge. Plato (427-

powers were developed, independent o
348 B.C.) writes in his famous work “Republic” :

Through mathematics is the instrument of the

sou] cleansed as
though awakened 1o

anew life force in a tempering fire; while other
occupations consume it and remove it from its power of sight, a
power which would, however, be far more deserving of retention

than a thousand bodily eyes, since only through such a mental
instrument may the truth be seen.

Plato had been initiated into Pvth
exact sciences by Archyvtas from Tar
famous doubling of the cube probl
spatial construction.

According to
had been advised b
rid themselves of
architects were saj

agorean mathematics and other
as. the mathematician who solved the
em from Delos through an ingenious

a number of Greek sources, the inhabitants of Delos
Y an oracle to double the size of an altar in order to
a pestilence which prevailed upon their island. The
d to have come 1o despair to Plato, who told them
that the oracle meant 1o criticize the Greeks for neglect of mathematics
and geometry. For the mathematicians the problem became finding the

side of a cube which has twice the volume of a given cube. Two other

classical problems come from. Greece: to construct a square with the

same area as a given circle (“squaring the circle”) and to divide a given
angle into three equal parts (“trisecting an angle”).

These three problems came to
Greck culture but

Not until the 1800
the circle’s squarin

play an exceptional role not only in
also in the conunuing development of mathematics.
s Was it proven that neither the cube’s doubling, nor

g, can be carried out using only compass and straight

“rational”),
n the regu-

numbers,
It turned out that in geometry,

one could very easily construct
rational numbers; for example, the

Greek mathematics had come into deep water, where
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C(?n'di'tions‘ are satisfied. stmultaneous)
will give the point sought, X |
In a dramai; ritten di
atically wrirten dialogue, “Platonjcus.” Eratosthenes h
, es has

3 e fo!lo‘ it} t
" 1: V”lg critictsm of Archytas, EUdOXUS and

Y, K’s intersect; i i
A section with the x-axis

methods the good in geometry will fall to rujn

directed from the purely vy v will be

geometrical to merely observable things

o For Plato it was obviousl
!mportant that solutions be purely
logical — constructive and prefer)—,
a‘bly carried out within construc-
tons which may be done exactl
wYxth straight edge and compassy
'Ih?se tools were merely aids with>
which the solution might be mad
f)bservable ro the senses. Th:
!Mmportant thing was the trajn of

th‘lou.ght,hwhich showed thar the
solution had bee ‘

problem rad be ;:1 foﬁund and Was correct. Let us now have a look ;

4 mits a solution with compass and straight cdie ;;c;

ge

Wl“Ch mn aty Plca] manner Sa“s‘]es ] lat N ({C]”a“d Or leedol“ ‘X()“l

Accircle C and a poj
pomt P (not the cent >
a ;hor\c’i(/;hrough P such that the chord hasnacgr?\:m
o find anat cciio we need to construct? We need
AN end-point of the desired ch i
the chord must oo . et onee
t g0 through P, we have then ly
10 lay the straight edge through P and the O“d)
point and draw the Jine. o
have .H.?w shall we find an end-point? We
oave it, if we can determine the length of one
o the two subdivisions of the chord lying on
either side of P. How can we ge Such 1

Figure 2.1.3

given. How can one draw
en length k? (Figure 2.1.4)

C

Figure 2.1.4

t such a

e

FOREIGN CULTURESI2

We utilize now the circle’s symmetry of N
rotation and draw a ¢hord k™ with length k
anvwhere on the circle: using the-compass we
mark off the distance k starting from an arbi- x
trary point X and thereby get the other end-
point Y on the circle (Figure 2.1.5). Can we
rotate this chord, so that it passes through P?

Or can we rotate P to a corresponding point
P Figure 2.1.5

The latter is casily done with the com-
pass placed at circle center and P, drawing the
concentric circular arc around unul 1t inter-
sects the chord k. We call the intersection
P'(Figure 2.1.6).

We may now measure one of the two
chord sublengths. sav the shortest one, on k”.
The length we get there can then be marked
off from P out onto the circle and we have
found an end-point of the desired chord.
(The length may be marked off in two ways
on the circle, the one solution is a mirror

8}

image of the other.) Figure 216
The discussion we have just carried out

utilized the figures only to make the train of thought more easily under-

standable for another person. And the straight edge and compass have

only served in the practical realization of the construction. The whole

line of reasoning is conveyed in the world of thought.:

It was such pure mathematics which Plata wanted to encourage.

Mathematics would be a training ground for pure thinking, which need

not rely on sensory perception (as it does in the case of “mechanical”
solutions). This strictness in Greek geometry has been one of the major
foundations for that logical clarity, that exactitude, and that conscious-
ness which has been built up in western science, especially 1n the last 400
years.
Let us look at another example, taken from Archimedes (2872-212
B.C.), who lived considerably later than Plato and who must be seen as
one of the greatest mathematicians of all time. Archimedes shows how a

given angle can be trisected using a mechanical method.
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with evaluan 1
wh e l;[lng d;)c dx;;xg c;ose to execute their responsibilitv by relying
les done abroad and assuran 1 ! i of considering
on studic ¢ ab: ces given there, instead of considering
question as their own task. 0
Everywhere i t fi
. ywhere in society we find the need to be able to delve into
account studi
. in 5.}reports, papers, studies, etc. The task often concerns not only
arnm K - \
o eng t}:e z]f.eport sdcontcnts but perhaps even more importantly re1din;g
veen the lines and trying to .
. evaluate the author’s v
the lin motives, value -
sible ’ hen
lsub;zct}:vxty, etc., to the extent that he hasn’t accounted for’t‘}:cm
openly an 1 :
bSOksy ind ones;ly in t.hedtext. In popular presentations and in school
oks, f: are often mixed together with i i
| 1ith interpretatio h 1
books, fa ' pretauons, the point of
P rr\;r}c an'd the goals are only hinted at or not mentioned at a”p
] - . oy ’
Svedit :Lls lri)quuc'ie’d here is the ability to analyze and listen. The
sh school board’s recommendar ! ‘
ation that education shall i
to development of al ' inki Fopri o
ert and logical thinking i )
ng is more appro
than ever inki Romever et
h hu bt}:fore. Development of thinking embraces, however, much
re the - ..
e e tb;n the ability to criticize; for that mater, even much mo;c than
eing able I i :
> Cbr ! to t‘hmk logically. The stronger and more important demand
eativity ; i ,
[hmk‘g T}:y in the schools must naturally include even creativity in
ing. J g i
thinki 8- There s a need for creative fantasy everywhere, and when criti
1sm is ex i ‘ :
asm s pressed, it ought always to suggest something constructive
¢ IVclanhrcplacc or improve the object being criticized )
atheman ith 1 pts
i o matics with its strongly contoured concepts, clearly delimit-
mof >0 m areas, and meager demands for materials. has the potential
e th , : ..
an any 9[hcr school subject for giving the pupils valuable devel-
opment in creative and logical thinking
The 2 1 i o
e e O(')DCI) year old inheritance from th logical school in Greece has
een tnvalu: 1 1 '
rio»d_[n'1 ;n e, but during our century it has also been the cause of
l l . . . . i
ofb yfm ir.ms of thinking. Liberation from the demonstrative method
ro }
proof, w 1.ch goes back to Euclid and other Greeks, must conti
within education. ’ e
In rec d 1
oo S [chnt t):e?;s t?erc hhas developed a strong interest in the broad contri-
e hield of mathematical heurist i
: atic: stcs made by the mathematici
Georg Pélya. Two volumes were published i ror o in
oy o T . ) published in the United States by Pélya in
athematics and Plausible Reasoning” '
. g ; ¢ Reasoning™ (vol. 1 “Inducti
oo the . S . uction and
o gy n N{athcmancs”, vol. 1l “Patterns of Plausible Inference”). Further
wor (I))n lprob.em-so]vmg were published in 1961 and 1965
6lya has long been recognized a i ‘ i
e o e ?,f .hmzad as an active mathematician, but
e s author o .pedagogxcxH’v selected collections of problems
Aufgaben und Lehrsitze aus der Analysis,” whi er
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G. Szegd. Pélya trained teachers in mathematics for more than 20

with
slated to German as well

years. The books mentioned here have been tran
as other languages.

A predecessor to these book
book with the title How to Solv
Swedish version in 1975, Dag Prawitz,
University, calls heuristics “a woefully ignored field.”

s was published in 1945 as a pocket
¢ It. In a thoughtful review of the
professor of Philosophy at Oslo.

All that work which leads 10 the idea upon which a proof is
based has no official status in the mathematical literature and is
usually not mentioned at all. Modern school mathematics would
look very different if consideration had been given to this ficld
instead of so singularly concentrating on the logical part within the

philosophy of mathematics.
Let us consider a few of Pélya’s words:

Mathematics is regarded as a demonstrative science. Yet this is
only one of its aspects. Finished mathematics presented in a finished
form appears as purcly demonstrative, consisting of proofs only. Yet
mathematics in the making resembles any other human knowledge in
the making. You have to guess a mathematical theorem before you
prove it; you have to guess the idea of the proof before you carry
through the details. You have to combine observations and follow

you have to try and try agan. The result of the mathemati-

analogies;
ut the proof

cian's creative work is demonstrative reasoning, a proof; b
is discovered by plausible reasoning, by guessing. If the learning of
mathematics reflects to any degree the invention of mathematics, it

must have 2 place for guessing, for plausible inference.

The general or amateur student should also get a taste of
demonstrative reasoning: he may have litdle opportunity to use it
directly, but he should acquirc a standard with which he can
compare alleged evidence of all sorts aimed at him in modern life.

But in all his endeavors he will need plausible reasoning. Atany _;3.{4:;,3 VEIN E‘ .
an ambitious student of mathematics, whatever his further NSt~ - 7 ,(‘;\
. .

may be, should uy 10 learn both kinds of reasoning, demon Egit{fvc

and plausible. O uMBa
A
(From the prefacéof

‘

“Mathematics and Plausible Reasoning”, vol.l, 95}%‘) Y
SEADY
Ay .5

i

i)
.
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Pélva does not mean to imply th
for learning the art of guessing. But he
ics at all levels” when he says, “

Pélyva’s works contain a large number of examples from his experi-

' ence as university teacher and mathematician, with which he llustrates

how fantasy, trial, and investigation can proceed forward to reach the

-solution. The books are directed primarily to students of mathematics,

and the examples are often taken from first year university courses but
correspond to high school Jeve

I in other cases, They have exceptionally
much to give to the subject teacher of m

who hav

at there exists an infallible method
addresses “teachers of mathemat-
Let us teach guessing.”

¢a few years experience teaching at different levels.
The following questions should have priority when revising the

mathematics teaching plan:

1. How to develop fantasy, the abilicy

2. How can the students learn ro use

3. How can they train self-

to get ideas, to guess?
experience they have gained?
discipline concerning logical thinking?

More valuable than any particul
theorem, or technique, is for the studen

First, to distinguish av
attempt, a proof from a guess.

Second, to distinguish
reasonable guess.

ar mathematical fact or trick,
tto learn two things:
alid demonstration from an invalid

@ more reasonable guess from a Jess

(From “Mathematics and Plausible Reasoning,”

vol. 11, Chap. 16, Section 9.)

For vears the high school curriculum h
with continued education

institutions in mind. Thos

as been designed basically
at the university, teachers colleges, and other
¢ recipients played a large role in the develop-
School Curriculum P

an, even if in principle
the school was to be organized such that the

lower level would be inde-

.

The quecr: o : . . .
¢ question now is if a change in mathematics curriculum in the

lines would make high school students less
anced studies. It is quite possible that what is
and technique is more than compensated for by

(hinking which would be more inde-
ars to be the case today.

athematics, especially to those
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occur, In appli ics it i

AN ziltlﬁr’ﬁofsn:;ilf‘:matx;‘s it is qften a part of problem formulation
Much pracrice should busdw o are s relevant to the problem at hand.
This ghres sood oon be done descn'bm.g what one has seen or thought.

s g training in the objectivity and : i &
mathematics requires. y concentration which
Termi
e, minology should be reduced to a minimum but consistently fol-

The oo .
how 10 awz;:izo?hgelcatp.r]oﬂem lies to a great extent in the question of
lower classes use plaz aP; s’ interest, The m‘ethods which teachers in the
mathematics teacher 1ok arge role later on in the upper classes when the
t5im hen et ; ersoglver. If the lowier class teacher feels enthusi-
them, then this will rfbpoff Cmshand fc.)r different wavs of approaching
oid routines, the less int on e pupils. The more the teacher follows
© emtortans ’t}]e o erest will be generated in the pupils. Cheap tricks
be vsed. WO ents are not necessary at all. “Bingo™ games need n
o en one of the textbooks for the “new h"b~ >

uring the 1970%, it lacked a pedagogical math came out here
gcometry. The children (i ‘L gogical method for the introduction of
Themselone bu deompr in ]t cf.4th grad'c) were expected to entertain
do exercises \Ivhich wezx:'epeeoP e] gures using circles and triangles, i.e. to
cal content. ntirely lacking in both artistic and mathemati-

Many vy * exper: .
awakened )\vi}t;nz‘sr'lz?ii;lencilrefmes th'c belicf that motivation must be
geously be cnthu;cd thrpro hems. Pupils can, of course, often advanta-

thould be enthosed cvcno‘:gh everyday occurrence, but they can and

next chapter will illustrate. ith purely mathematical qfestioning, as the
We shall r i

practice-arena t_oe:u[:; ’tr}:ifl?'apterf4 to the QU?stion of mathematics as a

teaching expericaces and ing of young pupils after we have looked at

tion of Chapter 6, 6.1 aszagﬁles . the.fO”OWing chapter. The first sec-

tion aspect of tcaching"ma[hemaatfi)ct;r 8 discuss the introductory, orienta-

3

THEMES FROM THE CLASSROOM

3.1 “How Many Are There?”
— Numbers and Number Systems

3.1.1 How Many Are There?

hildren get well acquainted with our numbers in a natural
fashion before they come to school. We need not and should not exer-

" cise them in counting. Children meet numbers in many games and oth-
erwise in various daily situations, and eventually learn to experience
them. They know that they have one nose, two eves; they can see that

they learn to identify the numbers 1 to 6

with the dot figures on dice, and so on. They may be able to count to 7,

or perhaps to 17, when they start school. Some children find it exciting

to count how many there are of various things — a joy which can grow
during the first years of school. It can be a “sport” for a child to count
the number of cars in a train passing by. They are not difficult to count
when it is a passenger train; the cars are long enough to allow counting at

a comfortable speed. But when we see an ore train pass by at a distance,
it can be really hard. We must concentrate, strain ourselves to be as
attentive as we possibly can in order not to lose count. There are so

alike. The difficulty seems to lie in keeping the
other while counting. We need to “stop” them

by. Our glance must be

hen we count a pile of

Most ¢

three loaves are in the oven;

many cars and exactly
cars separate from each
and retain individuality of each car as it passes
strictly controlled by a determined will. W
we often lay each one aside as we count it, but the ore cars can-

oranges,
Our whole awareness must be concentrated

not be put off to the side.
on our seeing.
This ore-train example shows that counting 1

s always an act of will,
and in actual fact when we count, we are counting our will impulses.

~0y
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These i
mpulses are b
completel so weak in most cases that the count;
. pletely automatically, unung seems to go
In school "
we learn :
‘more and more vea'rn how‘ to write the different numbers. W,
" tion and arith acquainted with the decimal svstem learn: - We get
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A not ge . X h er svs-
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r memory and , er system. Should we
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nstruct a new s . ’
— and we would o ystem ~— very likelv a 10
. —S r
own eff appreciate it since we had cor - ystem
wn etforts. constructed it through our
During th
g the Ist th )
system properly, so. th rough 8th ‘grades children have practiced the 10
need to stop ana’th' tkaft arithmetic goes mechanically. One should .
works entirely w'tlix'] » for example, when given 25 - 35 to multipl C;mt
¢ wi s .
ing, according in the system, although in fact quite with ply. One
e hg to what one has learned earlier tthout think-
{t1s then of va . '
why not the Sr‘one Alue> t(\>vpu.t oneself in another situation: for examp]
ge? We imagine th “ ample,
or five arrow 8 at we can only count fi
How can’ S;] etc. The concepts “six”, “seven” etz | five S;on\s
e ‘an we t en d . : ) . WwWe 0 not av
Aumber is more thane;c:xie the number of animals or arrows when 1}: ©
? Assume there that
th are 38 arro -
) n}I]'hmber when we only can count 1o 5 8 Arrows. How can we state
e class will certaj ‘
tainly hav . .
draw - y have suggestions. f
as s I0r exan -
ymb.Ol for number 5, perhaps a hand (scvl; wple. that we can
up to four with slash marks: (stvhized) and state “units”

siswiiten (9 [ I ] means 123 4
cisgiventy (D[ 76y (D e

IIO‘V WOUJd 101 exa“l[}le. 23 be Wllt[&l).\ Of course, as 10“1 }lallds
’ >
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And 38?7 As seven hands and 3 lines? No! No onc knows how to
count to 7, we are simply not able to grasp a group of 7 hands; we can
only count to 5. What do we then do?

Our answer to this question will determine whether

ve system. If we stop with only

h — we could indicate 38 with

or not w¢

eventually construct a more or less effecu
the two symbols - the hand and the slas

0000 |
OO0

But what a lot of space this figure takes! And how much space
hat we could learn

this figure:

would be needed for even larger numbers, assuming t
to interpret them at all? What might help us toward a better system? We

invent a new symbol, a symbol for 5 hands. 1n one ninth grade class they

agreed upon using a shoe for symbol: in another they chosc a five-point-

ed star. The picture for 38 would then be:

300 -
e OOl

How do we go on? Will any problems arise? It soon becomes

apparent that a new symbol is nceded for five shoes or five stars.
Otherwise the same dilemma as earlier will occur. The above classes
chose, respectively, a boot and a star with extended rays.

In the latter class there was another interesting suggestion for the

symbols for 25 and 125 (compare Fig. 3.1.1):

QQDDS
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aumbers which cannot be
system — Of which can be

indefinitely, gives unique representations of all the

I:\.tend]n 1§ now . y
S casy ‘C hJ\ U“d(ls )d t} 10 (] “U”lbel l 5
g \ [ STOC 1¢ ¢ S
2 ; .) . 2 5 = 12‘5, 5 - 125 = ()25, et‘.., bulld [hc b.lSC N Qur flVC‘ svstem, If
WE NOW restrict OUISC[V(?S to (llc WOT ld ()f PI((UIC“S\(l“bOlS, tlle“ a SCpa'
rate SanbO . '
l Wl” be IlCCdCd ‘Ol CnLh one Ut [h(.b( IlUlllelS ASSume we

have
0 ¥ % %

f()l' 1, 5, 25, 125 ‘md 2 h
’ ’ > y o Up to 6..5. Wha i S M
l o it l . i‘ ” ? l Sl tis the ]Jlbtbl numbcr w¢e W'l” b(‘,‘

462544125+ 42544544 =324
We g ]
¢ get the number just below he next symbol number, 3125!

N()W we S}I(’ lld dsk‘ an \ 4 Jl”l) ra ) 3 ,.4 ¢ wntien
1 C even M (AP m ] ¢ I b
Unulnhlh(’U\)L Sly W l(h our [I\L .S) .’HL‘UI » S AATC ‘] ere ; Sl‘).l§
1 5 H { YOS one or more
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NUMBER SYSTEMSIN E
handled at all in our newly constructed five-

written in more than one way?

It is not difficult to convince ourselves: our 5-system, extended
integers. (Exercise 3)

5.1.2 Number Systems in Early Cultures

How did the ancient Egyptians construct their number systems?

Numbers and arithmetic operations were expresscd, as was their
ymbols. When numbers were inscribed on

d special hieroglyphs for the numbers.
with Indian ink or a similar liquid on
g style, so-called hieratic
he hieroglyphic writing.
d of the following

normal writing, with picture-s
a relatively hard material. they use
But when the arithmetic was done
they wrote a relatively flowin
Here we limit ourselves to t
em where the base was compose

papyrus leaves,
(holy) writing.
They used a 10-syst
hieroglyphs:

| - 3

10 000 (finger)

N =10 QN = 100000 (tadpoles?)
@ = 100 (measuring rope) and
% = 1000 (lotus flower) = 1 000 000

(the god of infinity)

ch symbol to represent as many units as the
describe a number of cows one drew each
s was required. For example, 3508 was

The Egyptians used ea
base number specified. To
individual symbol as many times 2

w oo %%
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Since eac
. :‘(h S\r”]bol
. . represented a ¢ e
could be plac ) ed a certaj
be placed any which way. This too: n fixed number, the symbo

CHCICECRS

L] §
el g g
must mean 3508.

What ¢

. at corresponds .

writing there F to our zero? Is it needed? No. : .
¢1sno need for a zero svmbol ¢ Novn this pictorial

h .
l ¢ l)LS[ dOLUn]CHtS ]l() .
S \V“)g us ancient Eg\p“l“ wWriting 1re [hL
o ‘

1{}““( & I)\ rus J“d fhc OSCow ] .ll) P It [&
’1 1 I\’ rus ke t at th‘];l 1snh s¢
\ > 1t S} A’iu
Seaum 1n

London and j
and in - Mosc .
er of the first mcmfowlircspec“ve]}_‘ Rhind is the name of ¢h
- H < ¢ -
epoch around ISOO(;:E ‘.JOCUmcnr. Both rolls have fheir[ e Purchas- _
: .C.1n ancie roots in the
solved prob nt Egypt. They : -
CMs ang . eV conra . ..
d could be called collections of reci S o sores of
recipes of the t
vpe

C(d .
.“do this,” “do that.” «
" 1at s . . .
Egyptians took th; fi,)- ou will find it to be right.” In a Jate i
numbers. One w St step toward a more abstract e P.tnod the
O rOLe out ; - abpstract wav of wrirs
to different base numb ta sort of table where the columné | riting
ers. For example, the number 705 oooL orrespond
’ \V()Uld bc

written:

N L
M L

Strana, PN
£¢€ as i1t mny seen
> Tiorie 10 s 1, the peo r .
th:1 ’I;xgxls-huphm[cs valleys (fhci\l\fledf)t the Fertile Crescent round
and Assyrians ‘ <Kadians, Bab i T
yrians) used a co 1 » Babyvloniang S :
bers. W, a completely differe ’ S, dumerians
. edoc-sharer . - nt system . . ’
3 ge-shaped prism marks were Y for representing num-
3.1.2). . ere stamped in soft ¢lay (s b
A ay ee Freure
el

Figure 3.1.2 -

44
R 'y L )
 fier ), Nesgetntaer:

NUMBERSYSTEMSIN EFEARLY CULTURESHIS

The writing is called cunciform.
The base in the Babyionians’ system was 60; the basic numbers

were 1, 60, 60 60 = 3600, 60 - 3600 = 216,000, ctc.

Al of.these numbers were indicated by the \\'cdgc—slmpcd stamp:

V

It was the context which showed the particular value the stamp had
n particulnr place. In this system the number 59 would require 59 stamp
difficult to read and understand. One would

marks, which would be
have to count the number of wedge marks and one coul

at 58 instead of 59. They thercfore had a helping symbol with

d count wrongly,

arriving
the value of ten, a wing-shaped mark:

This figure corresponded to 10 wedges and thus could represent 10,
10 - 60 = 600, 10+ 3600 = 36 000, 10 - 216 000 = 2 160 000, etc.

The following are some examples of number representations:

(VT ¢ TEREg -

From these examples we see that the wedge’s placement, its posi-
rmining role. For example, the wedge on the left could

tion, plays a dete
indicate the value 60 while the wedge on the right could mean 1. Here

we have the beginning of a so-called positional system, a system in which
ol’s position determines which value that symbol adds to the

the symb

number being represented. Our own system is a positional system.

In the number 5358 both of the “5 s” represent 5, of course, but
the left five contributes the value 5000 to the number while the right-
hand five contributes 50. In this way we are able 1o use the same svmbol

to account for different values.
Was it always possible to determine from the context what the

vV

wedge marks mean? E.g. in
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Could one decide
whether the value w
as 2,61, 12
From the fact that various clarif o asor
seems clear that mistakes were made
the symbol. Another method was to us

bol for an “empty-space.” For example:

v % ;g; =3600 + 0.60 + 4 = 3604,

Symbols f
) or th :
In ancm oot for € empry space are predecessors to the number z
pane: hxa the empty space was marked with a dot o
ed on when ' .
(ivided zero (naught) began to
zero was given the same status

According to van i
e th:nu : der Waerden it was the Greek astronomers who intro-
mber zero, roughly around the time of Chr; "
Where do our numbers come from? o
We often say that w .
number system came fro
numerals h
3.1.3).

ving symbols were introduced it
One was to write a word beside
e a sort of double-wing as a sym-

: Opinions are
e used as a number, that 1s, on
as the numbers 1, 2, 3, etc.

e us 1
e arabic numerals, but the fact is that our

m anc: . .
e came fros ancient India.  The individual forms of the
ses undergone radical metamorphoses (Figure

o]

—=R¥F 6742
Brahmi Figure 3.1.3
‘ (From Menninger,

“Zablwort und Zifler)
vz.:aq!cvrq-,
Indian (Gwalior)

Y EVTCEe

Sanskrit-Devanagari (Indian)

la2 c5]6 729
West Arabian (Gobar)

ITrYrolyva 9.

East Arabian

ITSpLqib ~ 89

Hth century (Apices)

/12 3R 4 A
I 12345(67890 |

15th century

16th century (Direr)

NUMBERSYSTEMSINEARLY CULTURESI3?

The Indian numerals were brought to the West by the Arabs, pri-
marily during Islam’s expansion westward in the first centuries after
Mohammed’s death. Albrecht Diirer (1471-1528) gave the numbers the
forms which they by and large have retained to this day.

We have thus received our numerals from India and the number
sero from Greece. The 10-system has its roots in old Egypt (and certain-
ly further back in time) and the position-principle in its carly form comes

from the people of the Tigris-Euphrates valley.
Does the 10-system have connections to our 10 fingers (and toes)?
Most certainly, and therefore ought its roots to be as ‘old as man himself?

Language rescarch tells us:

e in German 10 is “zchn™ and “toes” are “Zehen”

e in English “digit” means both finger and numeral
(computers which give results as numbers are called digital
computers — and in recent vears we have digital clocks and watches)

o according to Tobias Dantzig, 10 is the base for the numbers in all
the Indo-European languages and in some other languages as well

It may appear from the words “cleven” and “twelve” that we have
had a twelve-svstem. Language research shows, however, that the
German words for eleven and twelve, from which our English words
come, “clf” and “zwolf” respectively, come from the compounds ein-lif
and zzo-lif, where lif is an old Germanic word for ten.

In the following table we see some examples of number names
from systems based on 20 and 5.

1. The Mavans used the system which vou get if you choose 20 as
your base, i.c. a 20-system. The day was divided into 20 hours. Anarmy
division was comprised of 2C - 20 - 20 = 8000 soldiers and so on. Basic

numbers:

1 hun =

20 kal = 20

20° bak = 400

200 pic = § 000

20 calab = 160 000
20 kinchel = 3 200 000
20" alce = 64 000 000
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2. Typical primjtive b
people in the New Hebride
"“as with the Wanyassa tribe

Vanyassas stems from Stani
tured in the s
tures!

Api ciltuye

I tai

2 lua

3 toly

4 van

5 luna

6 otai

7 olua

8 orolu

9 ovari
10 lua luna

Luna means both.five and h

“0” means “more”, €.g. otal = “;more

213 The Frr

We constructed earlier
the basic numbers, i.e.

What do base-5-numbcrs |

tures and use our humerals instead?

left with columns in the order for 1,
tem with its columns for 1,

The numbers 1, 2
must be written

5,25, 125, .
10, 100, 100G, ete.?

as the sum of ;

DR SIS §

125 25 5
!

~
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ase-5-systems hav
s (the island grou
in Central Atrica. (The inform
ey.) We can nore that the svste
ame way, despite the great dist

and in the A

one” or “one more”, ;

e-System i), Niembeys

a five-system with the he
with pictures for the numbers |

ook like if we re
Can we make
- JuSt as in our [0-sys-
» 2, 3, and 4 cap be writre
“five™ and ¢ “ones™

M

ance between ¢h

\‘72111')&15.\1'1

kimodzj

Vioviri

vitatu

vinyé

visiano

visiano na kimodz;
VIsiano na vioviri
visiano na vitatu
Visiano na vinyé
visiano na visiano

pi language. The prefix
el + 5,

Ip of symbols for ;
=z '

s 5,25, 125, ete. ‘

train from oyr pic-

a table from right to

n unchanged. By 3

e been found with the A
p cast of Australia) as w
ation on th
ms are struc
ese two ¢yl
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| e e N . 117 \We meat.
I [) | (‘)IN 1 st Q[)L‘Cify \\"h\Cll nUIanl S'\ stem
olaygs to s

: SV Sten.

"o fl\'c—.\\'5‘Ln
o , . -zero” in the ystet
attach little numt system is written “one-ze ‘ten” already has its
' e 1 the ten-sys N s . “ten @ R

(141\'0 1 the ; L Lero” as “ten” bhecause

[P YNC-Z
. ntLread ¢
We should

[ 13 S} cn.
Nl 1 1 I US W l(h n [hL dLCU] < l st )
1CAntr tw Q

‘ay we get:
In the same way we g

()10 = 11-,

7]0 = 12:.

10, = 20;

1110 = 21;
etc.

2510 = looi

26, = 101y cte.

. ne of the

; ‘n mav do so1 o
‘h 1o eive a tey on their own n clear that no digit
Those who wish 1o b o, structure it s clear .
Thos ) From the svstem’s s d. The svstem has the

. - * '. - . . -

exercises follow m‘bld ar - nor is there any nee
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an 4 shou
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five digits O,
addinion gives:
|

13
24 (with the value fourteen)

dadaing St( .l(l ; ) W 34 1 1 f a tﬂble.
i S 1 1 13 'C bLt 'lth [h(_ al
A 1 'E’ il . W 1 d O

125 25 5 1
78 303
423
P23
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-D'CO'NL”“” glkCS a carr y-Ovel I m the IZSS'COI)L”]”L
1 °lade I -
11 [h rs USUaI V dOH t ““”d trying out []le ()t]lel tJH ee allth
a4 7 7 o

tic o ra s 1n ]]ef ves-svstem
me PC t1o t 1 S-S

v

how these work out can take one
end of the section.

J.1.4 The Binary System

IhO W 1
S€ hO are interested in seeing
]

By this tim -
. ¢ the pupils h
There are co pupiis have asked which s

mputers built for the 10-system, but [},‘]’eSt;m. C(?mpufters use,
’ ajority of them as

we ¢
L”has pocket calculators are based
on the 2-cucrn . :
o b'L 2-system, or as it is called
1¢ binary system (“bi” = two).! ’
e Which basic numbers do we
gett we choose 2 as our base?
. Wegetl,2,4=2-2,8=2-4
= - - t ’
! 2 - 8, etc., in other words: a
s .q}?cncc starting with 1 in which
eac
number doubles the previous
number on and on
) bThe table here shows the
numbers from I to 17 “translated”
i i ,
nto binary language. Here too
aven i
On uc’s open up for discovering
¢ 1d<?n‘cs own how the operations
:k ditton,subtraction, multipli-
cauon and division work out
W > :
e b hy are computers based on
n; /s
the dn"lry‘system? There might be
; student 1n the class who wishes
o) ici i
prepare a sufficiently detailed

et onct .
vet easily understood answer 1o thi
. 3 is

L 16 8 4 2 I-,

1=

1
I
1
1
12 = I
13 = i
14 = 1
I5= 1
16 = 1 0
17 = 1 O
L

question to pr -
present later to the class.

1 S . ! )
o {hig o
pace does not allow here going into / h :
botw the 2-sy i
2-system is used but examples

i (hC L‘-lS&IU\)I” [Sige? hlll \4 b (84 .xdumt.! iy
Cac g ma ¢t
- b€,

THE BINARY SYSTEMI4

s should understand at the least that it is the basic 2-way polarity of
and magnetism and their phenomena which makes the 2-sys-
calculation. The 2-system has, of course,
ding to these digits could be: high and
o-current, or clockwise

Pupil
clectricity
tem so natural for technical
only the digits O and 1. Correspon

low voltage respectively, current flow versus n
clockwise magnetization.

magnetization versus counters
We come naturally into a discussion of the advantages and disad-
d to decimal (the 10-system). Look

vantages of binary numbers compare
multiplication table is in the two-system:

how easy the

But, on the other hand, — oh, such long numbers! The number
onc hundred must be written 1100100 in the 2-system. Doing arithmetic
fact, a trouble, but with

in the 2-system with pen and paper would be, in
't particularly matter. An addition

the incredibly fast computers it doesn
of 2 digits can be done in approximately 60 billionths of a second.
Why work with this material in grade 92 We take up this question

in Chapter 7 (Section 7.2). See also section 3.2.7. .
To conclude this orientation on number systems w¢ will take a

have been found as far apart as in

look at two primitive binary systems.
Bakairi tribe in central

Similar primitive base-2-systems
a tribe at Torres Straits, Australia, and in the

Brazil:

i
At Torees Straits

In the Bakairi tribe

1 urapun tokale

2 okosa ahage

3 okosa-urapun ahage-tokale

4 okosa-okosa agahe-ahage

5 okosa-okosa-urapun ahage-ahage-tokale
6 okosa-okosa-okosa ahage-ahage-ahage

For numbers larger than 6 the Bakairis have only the word “more,”

which means “many.”
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Again, we have an example of two svstems from ¢
ent parts of the world which despite the distance ar
fespect to the strucryre of the wo

s Primitive? The -

System is strucryred additively:; one, one-plus-one
etc. No wonder thay they didn't get very far
ber sixteen would sound (in English):

wo - two - Lwo - two - two - wo - two - two !

The binary System which our culryre use
Plicative principle, in 3 similar fashion to our |
the 5-system we constructed ¢

arlier. Afrer 134
2 butto 2 “times” 2 = 4 and after that 1o 2-4
fepeats, and the bagic numbe

nd 2 we do not go to

rsare what we ¢af] the powers of 2,

2 is the first Power of 2 and s written 2!
4 is the second power of 2

and 1s writtey;, 3¢
8 is the third power of of 2

2 (meaning 2-2)
and is wrirten 2 (2-2. 2) ete.
Ttis natural tq complete this syvstom with the definition 1 = ¢
people in Britjsh Columbia hay
sets of number words. One set for fl
mals, one for round objects and time, one for countin
long objects and trees, a set for canoes
for counting when p

¢ been
at objects and apj-
g people, a set for
» aset for measurements, and
© particular objects 4y, specifi
point to times long ago when this people’s counting wasg very much sen-
sory-bound. aAg T Danrzig PoInts out in his book, Nimbe
Language of Science: “The concrete preceded the abstrace,”

We have not touched here upon fractions in the different systems,
At school we have ¢ some extent o

8one into such questions as what kind of
binary Ianguage would correspond to tenths, hundrcdrhs, cte., what sym-
bols could we use for binary fractions, erc.» Here I w

with referring the interested reader 10 exercise 7, Quick pupils can be
given the task of building UP systems with base larger than 10, for ¢
Plea 12-system or 4 16-system. The 12

for ten and cleven, while
bers 10-15. Ope

d set
ed. The first six sets

rs — the

il content myself

xam-
S¥stem requires twe new
the 16-svstem, requir
can use letters,

numerals
es characters for t}

¢ SIX num-
tor example A= 19 B -

11, cre.

ompletely diffeé

» IWO-one, two-twy
along this royte, The num’

s is based upon the mryly;..
ecimal system and also to
! plus|
= § etc. Multiplication by 2

'
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FIGURATED NUMBERSISS

3.1.5 Figurated Numbers
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1- 13.., t

> n-th would be o
27 =702, and the n-t numbers

“(n+ 1).
1
o Now what values do we

o o @ . -
i ? are e o - - C(C.
for the triangle numbers Squ Lo
:t for the triang ) .
o inning we have  ,ymbers
) In the beginning .
15, ... .
i, 3,6, 10, N ‘ » ‘
> 25 0, . *s the series con canele Lo D15 L
[—{ V (1% . . :
O\ A Lthtcr ::: oo e . @
inue? Can we find a 1 o bers i
e . | .k e ‘lgu [ I
1ethod than drawing triar 01
n ; ¢
fter triangle and counting t
a ang
> }
dots? s )
In a 7th or 8th year ¢l

o ¢ no shortag

- clse the question is raised — there \;ln:-iﬁmolcs and find
— or wherever clse t 'lqlook at the structure of tl; beTO‘V it 2 dots.
proposals. .Somc‘pupldsc of rows: the top row has 1 Otymil the last row
that cach “.‘nnglC 1S lnlﬂ or row having one n‘lOrC. dot u its order in the
and so on with CaChd o as the number of the triangle (it
Vhich };as'niur;:;;y'l‘lijz \‘vc should write, for example,
series of triangles).

- e )
1 + + 3 + + I] 10] the elC\ en[ll Ly la“gle “U“lbcl

> sum. Ives, trom
: and calculate the su . Iy the numbers themse
call it ¢, < ils have examined only
‘ s he X
Other pupr

the first few triangles:



, = 1
L, =3
ty = 6
L, = 10
s = 15

and found th :

» at t .
Ther sav “the he.mcreases from triangle to triangle are 1, 2 -
sure of this? ‘\"’exl increase will be 6, the following 7 " ’C b
; o 152 “Yes,” sa , etc. an w
because for each s['ep ‘3' th;);e who have studied the triangles. “It’s r_eg}be

ca a new b . ° : 1ght,
than the bot ottom row which h
T . as .
work out m row of the previous triangle.” So in pri o dot more
any triangle number we want to, for exampl principle we can
y 2 amp e

o= 1+2+3+...+100

If it hasn’ ;
asn’t been discus :
c sed earlie
of how sums of thi ronc may here tak :
of this . ake up the
And with that, t ]l19 ;Ype], of so-called arithmetic series f)re calquis“odn
o at, telf the classical - e culate
- story of h :
schoolbov solve .. y ow Gauss a
) ve as a 1C- -
It such o say ‘:d a similar, although probably more difficult yealrlold
a way we ca ; . r
anele mom] ve can obtain a formula which directly cal » problem.
g mber without adding up a sum ‘ y calculates the tri-
Is there a ¥
§ another .
bers? Can we find a Way, a way to directly calculate the triangle
triangles? Perh @ geometrical solution by putting together B0 don
trian Tlcs; ! afs a little hint is needed. Can we pu} f;‘/o cor
angies togethe . ) two i
gether? Of course, making a parallelogram (Figure 3 ]I 5€§t1cal
5 .1.0a).

Figure 3.1.5a
Figure 3.1.5b
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s =15 and tigo = 100101 _ 5
And the ceneral f¢ ? o

general formula for the triangular number §
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culated. We no longer need dr
we identify the base row’s lengt

order in the series). Fro

A CIRCLEL4S

TWO PROBLEMS INSUBDIVIDING

Let us look back upon the different levels in our calculations of the

triangular numbers:

ngle and count its dots

ngle structure and form a sum to be cal-
aw the triangle. The crucial point is that
h with the number of the triangle (its

m this we draw the conclusion that the sum
the number of the -

Ist level:  we draw the tri
2ad level:  we note the tria

includes all the integers from 1 up to and including

angle. We have found a general method.
3cd level:  We wish to improve the method
solution which directly gives us the triangle number a
gular number of the same order. We can state a formula:
_n(n+ 1)
n 2 .
ork at the “physical” level, and many can con-
ch lead to the other, truly mathe-

and find a geometrical
s half of the rectan-

All pupils ¢an W
tribute with ideas and comments whi
matical, levels of solution.

This problem, in all its simplicity,
and experience with num

gives much insight into how we
can let geometrical clarity bers lead us to a cru-

cial idea.

3.1.6 Two Problems m Subdividing a Circle

In connection with the figurared numbers. the following two close-

ly related problems are of interest:
as many subdivisions as possible by 1

1. A circle is subdivided into
bdivisions are possible

chord, 2 chords, 3 chords, etc. How many su
when the number of chords is

a)4?  b)ii? (Figure 3.1.6)

Start by making a table up ton = 6.
f a circle we place a point. With this point
We place another
cting it to the

2. On the perimeter 0
only we have just one subdivision. the whole circle.

point somewhere on the perimeter and draw the line conne

.‘,
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first point. Now the circle is divid-

ed by this chord into 2 areas. Place

out a third point, a tourth, etc. in

such a way that the number of sub-
divisions is maximal when al] the
points are connected by lines (all
three points with each other, etc.).
Make a table as in Figure 3.1.7 with
the maximum number of subdivi-
sions. '

The first question is: whar do
we do, how can we satisfy the con-
dition for maximum number of suh-
divisions? .

A further task: find 2 formula.
in Problem i, for calcularing the
number of subdivisions (Exercise §).

After we have acquainted ouy-
selves with Problem | by drawing
figures, a little thought brings us to
the realization thar we must place

each new chord so that it intersects
all of the old chords but at differen:
points on the different chords.

~——

Figioe 3.1.7

of chords of areas 3
'N‘\~_“"ﬁ‘“""’“ T e ¥
1 H -

2 2

3 ; 4

4 :! ?

5 >

6 | >

© We must not draw a new chord through an intersection of two old
chdrds. L

4
)L'A
4
Figure 5.1.6
.on A (n) ]
Number Max. number
of chords of areas
1
2 I
R b
S
5 3
6
g
x
i

A (p)
Max. number

Number

[ S—

e

' VG z CLEI47
TWOPROBLEMSINSUBDIVIDING A CIR

N Figure 3.1.8

In Problem 2 we are not concc-rncd
with the maximum requirement unul we
come to the 6th point. A .

The sixth point must avoid posx’-
tions (there are 5 possible) sucl‘g th:-un;a
connecting line to one o.f the o ’ p(jm-l.,‘
coes through an intersection of two carly
;r chords (Figure 3.1.8). -

Students generally come quickly to
agreement.on the results in Problem 1:

1§ f chords Max. number of areas
Number of cho

N o
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L f points Max. number of areas
Number ot po

1
L 2
2 4
3 8
4 16
(5 31
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Many are surprised that the number of areas does not again double
when we come to 6 points — the sequence previously was, to be sure 1,

2,4, 8 and 16.

Before we had time to discuss the question further, some
students have set out 7 points and counted 57 subdivisions. With 8
points the number rises to 99. The sequence thus diverges more and
more from the sequence with successive doubling: 1, 2, 4, 8, 16, 32, 64,
128, ...

We will give a name to our new sequence - 1,2, 4, 8, 16, 31, 57, 99,

and return to it in a later section (3.2.6). We call it Moser’s sequence,
because the problem was formulated by Leo Moser (Scientific American,
August, 1969),
Moser’s example gives us useful experience: many times we are
deceived by a preconceived idea about the results. The reason might be,

as in our example, that we generalize too early, something for all analysts
and decision-inakers to give thought to.

3.1.7 Prime Number Generators

Often cited examples with surprising results are the following:

1. What values does the expression x* + x + 41 take on when we
successivelvsetxto 0,1, 2,3, ...?

y =y <y

Can we see anything in common among the values we obtain?
Putingin x = 0 gives 0° + 0+ 41 =41

x =1: I+ 1+41 =43
X =2: 2 +2+41 =47
=3: 3 +3+ 41 =53
=4 o4+ 41 =061

Do 1,43, 47,53, and 61 have anyvthing in common?

Yes, they are so-called primie numbers (2 number n which is not
divisible by an integer between 1 and n).

Is x* + x- 41 an expression which only generates prime nuinbers?
We test this idea by puitingin x=5: 53 +35+ 41 =71,

PRIME NUMBER GENERATORSIH9

. .t
A prime number! N . -
I’uil)'thcr testing can be easily divided up in the classroom, s

o )ll 1as hl u 1 . 'I ln‘S \Vln
C'lCh pu}, } S OF hCI llUllle‘X o p t 1nto thc CkprCSSlOH

W thl[”cw p o u y t Ill tfHC are
ShO rnme IlUllletS conun all urn Up. ¢ nex

for x=6: 83
x=71 97
x =8 13
x::9:
x =10 151

1 1 een
We sce casily that some prime numbers are sklppcj ovcx;:l B;t\\;’rcs
: 1 - the ex -
5 i -cen 83 and 97 lies 89, etc. But oes
53 and 61 lies 59, between e s the expres.
: i ime -en if there are many missing: :
jon alwavs give prime numbers, even if  Or e
:;icrc values of x, which do not give prime numbers when substitut
ion?
expression? ‘ . ,
e '};'hcre are such x-numbers. Let's putin 41. .\X/hat happ.ens ' disic
We get 41° + 41 + 41 — asum which is very obviously di
e ge '
- 41: the value can be re-written - .
ble > 41-41+2-41 ormoresimply 43 4L \)(/:1 ‘sge tha
1 n .
the number is composed of the two prime number factorsl‘ﬂ a o
Leonard Euler (1701-1783), from whom the example .come.:,mbers
F v = i e n .

/ . fromx =3 to x =39 givepnn :
that all the 40 values ot x S prime numbers:
(1t is not difficult to show that x = 40 gives a val\;c which can
ten 41 - 41, so that even x = 40 gives a composed va ue..)h o ber 41

Let us now form a spiral of squares starung with t en
(Figure 3.1.9). . N

Where do the prime numbers “blch
we have obtained from the x-subsututons
appear? (See Exercise 12) . ‘

Euler also gave the expression X + X
+ 17 as another surprising “prime numbe.r
sencrator.” Since the constant +1 1S
z\'changcd here for the lower numbe.r 17,
the work with the quadratic spiral will be | oo
less demanding. ‘

The expression X° + x + 17115250~ | 57 | 58 | 59 60 | 61
called polvnomial with one variah?le (x)
and of the second degree (the highest

53 | 52 | 51 | 50

54 | 43442 49

55 | 44 | 41 | 48

Figure 3.1.9
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EXERCISESIS]

! exponent is 2, in ,
74 the LR
y €an generate (;n/- Xoterm). It has been proved that no poj i
= Y Prime numbers, not even jf polynomi ¢ o2
- more variables. ’ en it the polynomial contain e
But there . . ‘ ;
‘ - there are polynomials of 12 var; : ol s ¢ ¢ 0 0
all the prime numb : variables which manage o o |
ers, along with . ~ 45€ 1O generax ¢ c 12 3 4
formula, (beyond. h some non-primes. A relatively s ‘ X
! yond. however, the scope of atvely simple 2 0 C 2 4 11 13
published in 1973 which > : ope of the school curriculum) wy 3
tves Ime &
erc.) successively Wheg t .e prime numbers p(p, = 2, p:=3,p, =5 4 i
. . ut i . 2 » Py =, I
Imerestmg results havy b P tmg. In the numbers n=14,2 3 ‘ . . . .. . .
Mont) ave been published in the : P T e 6. Carrv out the following arithmetic in the given systems without
onthly, vol. 83. 1976, and th . e American Mathemartics ) - o o /
(3). 1975 , the Canadian Mathematics Bulletin ! IS’ using the 10-system:
' » VOI.
f )31, + 33, b)10, +101, «¢)101CI,-110,  d) 101,11,
Check, if vou wish, by converting all numbers (both in the prob-
lem and in the answer) to decimal form,
3.1.8 Exeres .
1.8 Exercises : : ' i)
: 7. Analogous to the decimal comma (decimal point) in the 10-svs-
I. Write the numbers 734 and f tem, we introduce a binary comma (i) in the 2-svstem and utihize the
, 4 and 12059 w; : . . : :
ﬁ' L Id . 12059 with : basic fractions
g;o d Egvptian hieroglyphs r oi1=1 opo1=! 0001="L cte
cuneiform (Bab : ‘ 2 4 S
é y]oman wedee-m :
-mar . . . )
° ks) ; Do the following sum in the 2-system and convert the result to a

2 : .
U 2. Write the numbers )39 b) 150 o _ decimal number:  1;01 +0;011 + 0:;101
(Use the numerals 0, 1,2,3, 4, ©)795 in the fives-system. .
: > . P .
S Derive a formula for the maximum number of subdivisions in
the first circle subdivision problem, where n = the number of chords

3. Can everv naryr
(3.1.6).

. al num - A
Umquely? ber be represented in

a flves—systcm?

9. Determine the values corresponding to
the so-called pentagonal numbers as illustrated ..
below in Fig. 3.1.10. (Try to work out a formula
or at least an expression which gives the right

4. Convert the fo]

lowing )
10-svstem numbers): 8 numbers to ordin

ary decimal form (to

a) 34 23 o
s B)230c ¢)304 d) 10110, e) 11011 Figure 3.1:10

values.)

5. Write out ol
the multiplicar;
tcation rtable ; :
upto4-4. In P able in the 5-sy : s
. othe - system for o . ) .
left-most column ; d W‘;rffS, finish the table below where 3 nuo bnm.Nbcrb ; 10. Referring to the Prime Number Generators carlier, can any of
. 1s mulupl . ‘ mber | - . :
Put in the appropriate o] Pllfd by a number in the top row and th nthe | the numbers generated by the expression
. : ate place a
p Placein the table. Some products are alre de rf(?lSIUIit
S 7 b a ,V Hlec

" ) 1N 10 get you started.

N+ N+ 41

land anywhere but in the corner boxes of the quadratic spiral?
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3.2 Pascal’s Triangle

3.2.1 Street Netwwork

We continue on our voyage of discovery through the world of
numbers and once again examine counting with a concrete example.

Figure 3.2.1 illustrates a street
system in a modern city where
avenues and boulevards form a net-
work of squares. The avenues in
the figure run downward to the
right; the boulevards downward to
the left. We can label the streets
and the intersections. Corner H in
the figure is the intersection of
Avenue 2 and Boulevard 3 and may
thus be called A2, B3. From the
top corner AO, BO one may pro-
ceed to H by different paths. Some
paths give a route of minimum length, namely 5 blocks long. Ignoring
all longer paths we ask: how many paths of shortest possible length go
from AO, BO 10 A2, B3?

Many students choose to be concrete and draw the paths which
they find. All pupils have the ability to approach the problem in this
way. Burt soon the question arises: have we found all of the paths or is

T o

-

A)

1

Y

Figure 3.2.1

there yet another route lefr?

The pupils compare their figures, of course. Some have 8 routes,
others 9, others 10 and someone has 11 routes. How can we know that
we have found the last path? We need to systematize!

We need to order all the paths according to a system ~ when we can
determine which route will be the last and in this way know the number
of paths. How can we come upon an organizing principle such that we
can number the paths and let the next path develop logicaily from the
previous one? '

Figure 3.2.2 shows a sequence of routes which somie of the pupils
have found. According to what principle are the routes ordered in the
figure? The answer is given in Exercise 1.

Figrere 3.2.2

also to the imagination. ; et s
cessively how many shortest paths go from the

intersections.
results on our dr

PASCAIL'S TRIANGIEIS

b \ ? %
)1 g 2 3 4 <
ze % 7 i 8 2« 9
3.2 A svstemsatic sequence of paths in Section 3.2.1 See also Exercise 1.
i appeals
A problem such as this speaks naturally to the intellect but app !
h We can draw our street system and count su
p corners to different

i i { d write in the
We start with the nearest intersections alr{
awing. To begin with we get, schemaucally:

i ?
er di nue to unfold?
How does the number dmgragl conu T hmeth 6 blocks.
i uil the shortest paths ar
Let us continuc on unt .
ay soon ma
- bers we get. Perhaps we m
Let us observe the num ' -
increase.
discovery and thercby come to a theory of how the nun;(bcrs e the
: see di ing our work exa
Perhaps we may even see directly durmblo
numbers grow. That is, of course, our_.real goal. h‘ et scheme.
We can in any case all help out in developing the nu

The correct scheme looks like this

[
I 2 1
1 3 3 1
1 4 6 + 1 1
5 12 5
o lis 1 etc.

_ N  reo-
Do these numbers show us anything interesting? Is lt)herefan_\,thsz;s
"t it apf i rof pa
ularity to be discovered? Doesn’t it appear as if c)ach Eum e berspon s
. ) )
the sm;m of the nearest numbers in the row above? (T e nulr; o on the
check sums in the e
[ ¢ lwavs 1.) We can check the
edges are, of course, alwa
gram:

1C=6+4 or4+6 etc

3=1+2, 4=1+3o0r3+1,

% ¥
5
10

«?.




- “We just go one step further with each path.” might be the pupils’
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Does this rule apply generally? Could we. for example, prove thalg

the number of paths to A2, B3 has to be 6 + 4. 1.e. has to be the sum g
the number of paths to A2, B2 and 1o Al, B3> t
And could we thereafter realize that for any arbitrary choice oft
intersection: '/
Z=X+ ¥ ? (see Figure 3.2.3)

The chain of thought in a sroup - or
individually - might go roughiv like this:
we keep in mind that only the shortest
paths are to be considered. How must
these look in the network > Well, all the
shortest paths to the Z-intersection must
pass through either intersection X or

intersection. Y. How many paths pass v
through these intersections? Obviously z

numbers x through X and y through Y Figure 3.2.3
respectively. The paths to corner X are *

simply extended by one block, and this does not change their number. |

expression. In the same way the number of paths to corner Z through
corner Y is.y. Thus

Z=T X+ vy

and we have proven an additive rule which allows us to further expand
the number diagram.

We can leave behind the rather primitive and time-consuming
method of looking for each new intersection, for all possible shortest
paths and then counting them on our fingers, so to speak. Let us expand
the table another 6 or 7 rows down,

1 1
1 2 1
1 3 3 1
14 6 4
16 15 20 15 ¢ f

Y721 35 35 T 90y
56

, 28 56
D o%.c36 84 126 126 84 35 o 4
i 10 45 120 210 252 210 120 45 10 1
462 462 330 165 55 11 4
-1 12 66 220 49§ 792 924 792 495 220 66 12 1

PASCAL S TRIANGLESS

()()\ tth s eetunyg ¢ YCTWO l\ l\ (h( an B & BAY LAY
i snt e ACasIcr w o il
y U 8 ha o L O e
tllls, Ml. Ulln. l\ll L L}l(l(, some f()ln\ul.\ to d“(‘.l]\ LAL.U ate the numbe
< }lxl\ ct ddd up ] U 1 )} row b\ oW/
SO t]ll[ we don t e} } the t n'\bcrs n [lAC | % L C. IC 1

1 leave q r a while
We shall take up this question later but leave it to rest fo

Now we turn our attention to...

3.2.2 A Completely Different Problem

E we wish to
Of five people, whom we shall call A, B, C, D and l%, o ¢
: &l 2] Y 1 k‘
t o to do a task. How many pairs can be formed ron{1 the )
choose tw 5 a task. oW many pairs be forme om the e
sons? How many combinations of two objects are there
Persons: 3

it . ‘ ' ¢ ) . .
different given objects? . . —
( O . can approach the problem in many ways. Some puy il :

ne 2 ;

i 1 1 o "del‘C
iown all combinations S\’S[Clﬂﬂtlcally mn thC alphabctu 11 C
¢ -

AB BC CD DE

AC BD CE
AD BE
AE

2 + 1, just as in the study of triangle

and arrive at the sum 4 + 3 +

umbers (Section 3.1). ‘ o .
) S ( one savs: if we write down all 4 combinations for cach pe
omeone savs:

son, then the table will look like this:

AB BA CA DA EA
AC BC CB DB EB
AD BD CD DC t(
AE BE CE DE ED

] cample
Here every combination appears accounted for twice, for examy
ere ' ’ ) . . . N
! I re
BA in addition to AB. The number of combinations is therefo
e

5.4
2

11C IKQ
I ]l. 1¢ d Ve d“LLtl\ thc sum to “l ll [hL revious ”)Ctll()d
s m th() > S p
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We can also let the five people be represented by 5 points, regularly
arranged as the corners of a pentagon, and seek the number of possible
connecting lines between them. FEach connecting line then corresponds
geometrically to one combination of two people.

If the number of people is n, then the number of choices of two
persons — according to the reasoning which just gave us 3.4 as the num-
ber in the case of 5 people — will be 2

2

(n) -~ n (n - 1)
2 2
We introduce here the nomenclature (:) for the number of combi-
nations of k people from among n people, or more generally, k objects
from n different objects.

(g) gives us the Greek triangle numbers:
=1 =3 MH=6 G)=10 (6)=15 et
2 (2 (2 2 (2

A look at the number diagram for the street network earlier shows
that the numbers there form two symmetrical lines in the triangular
table. For example, the number of paths to those intersections lying
along Boulevard 2 give us the triangle numbers 1, 3, 6, 10, 15, .... This
leads us to ask:

Can we find an equivalence berween the street nerwork problem
and the combinatorial problem? Are these problems only different in
appearance; are we here basically concerned with one and the same math-
ematical problem?

To form a combination of two persons from five means that I must
choose two people. Do I encounter any choices when 1 go from AQ,
BO to the A3, B2, which, as we remember, has 10 shortest paths to it?

Of course! Right at the start I choose to go left or right (defined,
let us sav, from the reader’s point of view). I will pass another 4 intersec-
tions before I arrive at A3, B2. In order to get there I must choose left at
two of the intersections. Where I choose to turn left does not matter,
just that I turn left exactly two times. The situation is the same when
choosing two people. I can go to each one of them and say “yes” (select-
ing them) or “no.” Exactly twice must I say “yes” if I am to have two
pecople in my combination.

In this way it is clear that the number of paths from the starting

point to the intersection A7, BS, for example, is the same as the number

!
:
i
1

[P ——

PASCAL'S TRIANGLEIS?

The number ¥

of combinations of 7 (or 5) people from among 12 people.
of paths to the intersection will thereby be:
(12)=('2).
5 7 «© »
i es
(This cquality is understood at once when we consider that “y
to 5 people means “no” to the other 7 people.)

3.2.3 Pascal’s Triangle

c v take up the question whether there exists a direct for- ,
| f\vc ‘l-an rlct:bers (nfwhich constitute the number schl:mc,hor
or the nu , > of |
;1;:31’5 triangle, as the gchcmc came to be :illlc;lb;ftcrpj:ecail:r:,r;;er: e
matician and philosopher Blaise Pascal .(16..)—31' “'I?I:aité it
stimulating dissemtation on the scheme in 1653: .
metique.” ‘
This arithmetic tni
Documents have shown thaF th
1300’s. The triangle begins with a onc att
with the scheme for the number paths in the str

angle was known before Pascal’s ume, hovivev:‘r.
¢ scheme existed in China earl?/ int el Y’
he top and thereafter is identica

cet nerwork (Section 3.2.1).

W 4 v y W 1 1 Yy W re we lC[
If c vV lSh we may re-write the trlanglc as belo“, hC
’

s n:
have the value 1, just as we do for all the natural number

.........
.......
.....



ose t]]e Ie[tel le“]a“““". ome Slu(iC“[b iregue he thd[ We
5 (S me 5
ha‘/e to (.ho d u re

TTemt iR CLASSROOM

Can the (:) -values b le 1 E
Pascate s alue dc]ca u;hted directly? When pupils construy
gle, they tind the additions 74 ‘F
' ; : s rath 1 ‘L
down to rows with 2-digit numb C aornous EN o
o 10 ron g mbers. Tables may exist for (13) (
row, but how would v ine (3 O herher
Doy o ho ould vou determine (°%), for k ? "

ith the hel. 1t by addition is far oo time onsumin N
g >-cons ‘
ith the help of a pocker caleulator e and unsure. eva

?

Direct caleilation of ()
! i
i

I e[‘\‘ tqke ( )15 1 concre S\t S ¢ t 1S
S L4 < a concrete (..\dmp c thc numbcr C f Lomb]nﬂ rons O[
4 3

4 persons t
P - s trom 9, gvhom we could call A, B, C H and I i
WwWe start by trvg g e fraAnd L Z
) mne t 3 f
would begin by askino-'Hb o follow the method we used for 7} \\cg
. S 5 '1Ow many 2o W
the first letrer? When A is ¢k any groups of letters are there with A ad
the second lester 11 ts the first letter, how many choices hay asy
letter s chosa, ;;] X 1ere are 8 choices. And after that when th\e‘ we for

k3 * b J >

are 7 chots ,Ando“ many ways can we select letrer number 33 >§)‘L}§)11<JE
. $O on. : ‘ ° therey
number 1, 2, 3, etc. is 9, g 7The number of choices possible for letrer|
choice” for th * % % eeo respectively dow 2 :
e la .o nto2and 1. - '
st letter must here be Interpreted as o one
as meaning that we

4

have no choice ar all...)
We may illustrae i
with 2 oo glf e O;t:trrhc number of cboxccs of the successive letters |
more and mae o ect netw}ork which subdivides and spreads ;
Sy : ections (Figure 3.2.4). o
e tigure illustrates the choice of he
Wwe can easily imagine for ourselves e second and third letters . ’
;

this ,
network expanded to include w REFCy,

th i ’ f
e CbhOICe of the 4th letrer The 'N‘Q’Q& 7o |
n Cor ! = ‘.
f.UmI €r of groups with A as the o =
ir
st etter must be8 -7.¢. Q °1 =
, S{nce the first letrer may be I 5 ]
c
¢ ]osen in9 ways, the total number of 2
cter groupings must be 9- 8. 7 . H A
(=3024)
‘But wait a minute! Do not the Ae .
AF

\s IS I «
l()ll[ 1(?”(,’[5 Ve l‘ (: “I(f ]) OcCcur 1S
1 gl()up SEN kld} t””(.:‘ among [hksc

3024 groupings? For cxample

/”'.'Ig:.'rr J24

PASCAL 'S TRIANGLEISS

ABCD, BCAD, CDBA, DBCA, ctc,, which differ only tn their ordering,
must be considered as one and the same group of people, as only one
combination of four elements. How many times do persons A, BB, C and
D occur together among the 3024 groupings which were formed when we
considered the placement of the letters, when we ranked, so to speak, the

people into first, second, third, and fourth places?
A, B, C, and D occur as many times together as there are possible

placements of these four letters.
How many different placings are there?
For the first position in a 4-letter group we have 4 choices, for the

sccond position 3 choices, for the third position 2 choices and for the
fourth position *1 choice.” This leads us to the number of different
groupings, or permutations as they are usually called: the number s

4:3.2-1 = 24,
This is how the list of 24 groupings looks, in alphabetical order:

ABCD BACD CABD DABC
ABDC BADC CADB DACB
ACBD BADC CADB DACB
ACDB BCDA CBDA DBCA
ADBC BDAC CDAB DCAB
ADCB BDCA CDBA DCBA

To summarize: of the 9 letters A through I we form 9
four-letter groups, where each letter elected occurs anly once (AABC,
for example, is not allowed). But each group of four letters occurs 24
times. The number of combinations must therefore be

9-8-7-6
24

-8 -7 6

or more clearly written,
9-8-7-6
4-3-2-1
which, when evaluated, gives the number 126.
) b=l
The logic we have followed has shown us that

9, _9-8-7-6
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and could be i i
ane coule a}fphed to any other particular numerical example without
ge. an ict ‘

s \:e o shto the explicit appearance of each factor in expression
Wo’uld 5 s?e tfrough the particular case and grasp the general. How
we write i 5 17

N , Qr example, the corresponding expression for (17>
The answer is clear to us in a m Y .W
of b il o o oment as soon as we become aware
ow rs there should be in th
¢ number (above the line): j
e o . ove the line); I1n
example there are 6 objects to be chosen. We thus eet )
o

(l7)=17'l6"15~l4-13.12
6 6:5-4-3-2-1

ﬁna“vT:i:reuden}:s tak]e pleasure in reducing factors top and bottom and
i y arrive at the value 12376.
i the same way If the example were (1117)' we would get
(l7)=17'16' 15-14-13-12-11-10-9-8-7
11 I1-10-9-8-7-6-5-4-3.2.]

which cam be < melif:
hxch(:um b(; SI‘mphflcd at once to expression (2) for(!7)
onsidering the fact that i ' ‘

at se '
ot o chiva]em.to ™ le‘ctmé; 11 ohb]ects from among 17 differ-
oosing 6 to throw i i

g out, w

have made use of the equality e mighe directly

17y = (17
(11) ((,)

The general formula becomes
(n) = n(n-1)(n-2) . . . {n - (k-1))
k k(k-1)(k-2)...2 -1

or more simply

(n) = n(n-1)(n-2) . .. (n-k+1)
k k(k-1)(k-2)...2 -1
We note that the number of permutations of n different objects is
Pn=n(n~1)(n-2)...2~ 1

h p
B ] < . «f il
}
I )C e\( ression 101 S usu l” written n and C l”cd n f-‘(.t()(l ll

5!'=5-4-3.2.1

{the 1 mav of course be left out, if one wishes.)

-
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The formulas for p, and (E) can then be written

- 1
pPn = 0

See also Excrcises 3-5 below.

3.2.4 Binomial Coefficients

In numerical tables and in the mathematical literature in general,
the numbers (M) are called binomial coefficients. Where does this name

come from?
A binomial is an expression which is formed as the sum of two

terms, ¢.g. a + b, a + x. 1 + x, etc. Oftentimes we need to raise such bino-
mials 1o powers, for example:

second powers (a - b), (1 +x)° etc.
third powers (a-b), (1 +x) et
For example, if the side of a cube having length 1 is increased by x
units, the new volume will be the third power of the new side, i.e.

volume ={! + x)
Which terms appear if we expand these power expressions?
We perhaps remember the squaning rule which says that
(a+b)=a -2ab+b. _
The coefficients, as they are called, for 2%, ab and b? are here 1, 2

and 1 respectively.
be written 1a° + 2ab +1b%.)

(The expression may, of course.
Those who don't remember the squaring rule could always write
(a+b) (a+b)for (a + b) and carry out the multiplications step by step:

a(a+b)+b(a+b)=a’+ab+ab+b’=a:+23b+bz.
Analogously we may write
(a—b)"=(a+b\,\a+b)(a+b).

Here we need to form and add up all products which have exactly onc
factor from cach of the parentheses. What kinds of products can appear?

+
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F"ll:hree a-factors gives a- 4. 4= a’

V N bwo a-;nctors and one b-factor Bives  a-a-b= ah
: . 2 a- b= g

¢ r(;e; actor and two b-factors gives a- b b = abe

nd tinally three b-factors gives b-b- b= b -

But }.mow many products do we
Obviously one 2’ and one b

In order to get an

three choices (for each p

number of such

get of each kind?

a’b product, we nee
‘ arcntheses we h
choices (combinations) is

(?)=3

—_— s

| The term ab* arises when we
theses, therefore giving us

3 - N 2

(2) =3  of the ab™-products.

P'mally, if we note that a* and b
“respecuvely, from the parentheses the

(a + b)’

n we can write

1]

3 2
a’ + 3a’b + 3ab? 4+ b*

3y,3 L3y 2
(o)a +(l )a’b + (;)ab“ + (;)b’

Expression (1) is of course

expression (2) hel

powers \‘(/c(c)m f(jls us to see how the formula would look for high

or exame ) ow analogous choice logic for (a + b)s gher
xample. It may, of course g : ), to take anoth-

the one we would use in practice but

| s also be written as
(a+b)(a+b)(n+b)(a+b)(n+b)

and gives theref
. gives therefore
which ealculates out to

d to choose b once out off

ave the choice of a or b). The

choose b from two of the tree paren-§

arise with 0 or 3 choices of b, |
b

(a + b)®> = (5)25 4 (5 W25 b5 ;‘
(0)1 + (] Ya'b + (5);1'[) + (;)a%" + (j)ab4 + (S)b5

which calculates out to

(a+b)=a 435, ‘
Y=a‘+3ab + 100b « 102" + 3aht w

? ' P()\V(.‘] SN ).l“sl()“.\' ()1 su jl (l”n.l]\ lhui AN

(¢\}. o C bln. ] 4
, f the num 'S we ¢r L& I DS a 3.. .
h bc "S We e )(‘()])n: "rc(i n )a\ ‘ll Stnane e

tormulas ccmmining
It is in connection with
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the expansion of powers of binomials that these numbers have received
the name “binomial coetficients.”

3.2.5 An Application in Physics (Theory of Heat)

A solid cube of steel has sides of dimension 5 cm at 0°C. It 1s heat-
ed to 20°C, expanding so that cach side has the length 5 + h em. where
h according to heat theory would be

h=5-20- 0,000012.

The decimal fraction is the so-called coefficient of expansion (for
steel, in this case).

We get h =0,0012.

What is this new volume?

We must expand (5 + h)* and get

(5+h) =5+3-5h+3:5-hi+h' =125+75h+ 15h*+ .

Of these terms, 125 is the volume before expansion (5). 75h has the
value 75 - 0.0012 = 0,09 and is thus quite small. We can ignore the still
smaller terms 15h* and h*. The new volume has, with good accuracy, the
value 125+ 75h = 125,1 cm’.

3.2.6 The Surprising Triangle

We have scen that Pascal’s triangle is made up of the binomial cocet-
ficients (3.2.3 and 3.2.4). We have further seen (in 3.2.2) that the Greek
triangle numbers form a line in the triangle. Are there other interesting
number sequences which appear in Pascal’s triangle? There are many,
and it is often surprising that the triangle in one way or another contains
a number sequence which one has come upon in some particular prob-

lem.
Let me give two examples to start with.

Example 1t If we add the numbers in Pascal’s triangle row by row

we obtain the sums:
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I

I+1=2
1+2+1=4
I1+3+3+1=8
etc.

. The sums thus form the doubling sequence 1, 2, 4, 8, .... Will this
continue with each succeeding row? (Exercise 2). i

Example 2: In Moser’s circle subdivisi
‘ vision probl i
we obrained the following number of subdivisionf: e (Gecrion 31.6)

1,2,4,8, 16, 31,57, 99, ...

We -recall there that the series could fool us when it deviates f
the doubling series 1, 2, 4, ... starting with the value 31, Can 1\; e
sequence, too, be found in Pascal’s triangle? In fact, yes if we add olscr .
the rows up to the line drawn in Figure 3.2.5 we ’gct t-he correct :u(r)rll—lsg

One ¢a i 1
bd.»:n‘ show that thxs‘applxes as far as one wishes to go in the circle
subdivision problem, or in Pascal’s triangle.

Maximum number
of areas

1

1 1 %
1 2 1 4
1 4 6 4 12

1 5 10 10 31

1 6 15 20 15/6 1 57

| 1 7 21 35 35/21 7 1 99
Figure 3.2.5 1 8 28 56 70/56 28 8 1 163

3.2.7 A Glimpse of Probability, Chance and Risk

In the 9 :
¢ 9th grade the students are at an age when they particularly

want 1o tes i i i i
o test their powers of intelligence, especially in discussions with
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teachers or with parents at home. Itis an important stage in their frecing
themselves from dependence on adults. In mathematics class we get into
the concept of probability; we posce problems concerning chance and
sk, Some students have already met up with questions of the type:
What is the chance of guessing all right on the football pools? Is it equal-
Iv difficult to guess all of them wrong as all of them right? What is the
chance of throwing three sixes in a row with a dic? And so on. These
are problems which they gladly investigate, so that they can feel they
have clear-cut answers and that they have a grasp of the basic “founda-
tion.” I emphasize “foundation” here because the concept of probability
is difficult, a difficulty which it is not casy to become conscious of. On
the other hand, students readily note that the actual problems are them-
selves quite difficulr, in fact “sneaky.” One can casily be led astray with-
out knowing 1t.

The students will once again meet Blaise Pascal, the man who
together with his countryman Pierre Fermat laid the foundations of clas-
sical probability theory, and they will have the chance to tackle basic
problems of the same type as Pascal faced.

Let us examine three problems which are related to earlier sections

in this chapter.

1. Suppose we guess the answer to cach of 5 questions which are to
be answered with a “ves” or a “no.” The questions are such that we do
not have the slightest idea of the right answers. The chance of answering

correctly is thus %

a) What is the probability of getring 3 correct answers?
b) What are the chances of getting at least 3 correct answers?

We start with a): it does not matter which 3 questions we succeed in
guessing correctly. We could answer correctly on the first three, on the
last three, on questions 1, 3, and 4, etc. How many such combinations of
3 right answers are there?

The number must obviously be equal ro the number of ways of
choosing 3 questions from out of 5, that is (§)= 10. (See 3.2.1-3.2.2).

There are thus 10 so-called successful cases, 10 different 5-row bet-
ting pool guesses with exactly 3 correct answers. But how many differ-
ent 5-row bets are possible at all? On every row (question) we have two
alternative answers. How muany alternative answers does that give for 5
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q S110NS < p pl S LAY a en ncy erct answer 5 - altens:
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natives. This answe i

ah‘,maﬁvcsh\:,s' ;n.m L,r cannot be right, of course, since the number
ith only three correct answers is 10 0
In ?ctual fact the number of alternative
answers increases multiplicatively from row
to row: for each of the two answers to
question I we have two possible ways of
answering question 2, which gives 42.- 2
;1~Itcrna.t1vc ways of answering g()th qucsj
tions, etc. Figure 3.2.6 ought to show clear-
Iv enough why the growth is multiplicati.vc
The number of possible alternative answe -
1s therefore "

2:2-22-2=2=32

Accord: e -
rding to classical probability theory, the prob

2 correct answers is the following fraction: wbility of exactly

! o of . :
- number a?f successfu] cases (with 3 correct answers)
umber of possible cases (with 0,1, 2,3, 40r5
y * .

correct answers)
The probability in question is thus

10 _ A=
35 = 0.31 or 31%

b) GC[[HI" at ILJS[ 3 ri ll 1ncans gettinge _‘, 4 I 5 ri ]lt. llle Pl ()b‘
5 g t 1S g {t y O g

ability sought after is ¥
S afrer efore {accordi i
g 1s therefore {(according to the investigation above)

C)+ )+ (5)
45

S

10+5+1 _ |
32 32 5

Can cx: s of thi ]
(Can examples 6f this type of probiem be

See example 3 below!) solved yet more casily?

¢..:. \\r’( h. C < S L
1V 1 compin i with 10
l atton ]L\’Lk, L)Ulf”(&( Vv [I bU[t()“§ labtl('l
“”h l]:C l)h”nb'.ls l.a.:.-, e ).lndv PIU\ ar I ase dutt Iy .Hktd k- AIhL
X N S cleas L [$34 1
(N ) S h 2 rent cot t‘ll RESH N
HOCK ¢ I)(‘II\ Qr ]\ 1 One })U\}lLS down [} [& ’,‘ m 1 on 0‘ “U“lb‘.l
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it does not matter in which order one pushes the number buttons.
nen-

flow big s the risk thatan unauthorized person might succeed in oj

ing the lock on his first try?

What do we mean by “risk™?

We take the same approach as Fermat and Pascal and seck the num-
ight combination in relation to the number of

ber of ways of setting the r
wavs of pushing down any combination of buttons.

Let us even include the possibiiity of pushing k directly, 1.
any of the number buttons at all, as one of the

the

possibility of not setting
possible wavs.

The number of button combinations which opens the lock is obvi-

ously only one.
How manyv are then t
lies close at hand would be to calculate

he total number of sertings? A strategy which

the number of ways to choose no button =1
plus the number of ways to choose 1 button =10
plus the nuimber of ways to choose 2 buttons = (19)
’ 2

plus......
plus the number of ways to choose 10 buttons= (:g)

This sum is equal to the total number of button combinations pos-

sible. But there is a considerably easier way to go about it

We can look at the choice of buttons to push from another angle:

for every button we suppose we face a choice shall we push the button ov

We have these two alternatives for each and every one of the IC

not?
buttons.

Analogous to the study in Example 1, this give
ons. The risk that the lock is opened after only one random

s 2% = 1024 possible

combinat
try is thus

1
1024 or approximately 0,1 %.

3. What are the chances of getting at least 1 six in 4 throws of a

die? “At least | six” means I, 2,3, or 4 sixes. We might choose here the

method of caleulating
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the number of cases with 1 six
the number of cases with 2 sixes
the number of cases with 3 sixes
and the number of cases with 4 sixes (which s 1)

and
thercaft.er total up these numbers. If the total is x, then the chance
we are looking for would be

X - X
6-6-6-6 129

since the number of possibilities is 6 at every throw
Th i i i 1 '
] ebre 1s,f however, a time-saving trick, namely that of calculating
o . . .
the num erlo cases ‘w.hlch are opposite of getting at least 1 six. This
11;:{ simply determining the number of cases where no six appears at
all during the four throws. ‘
T e
) here are 5 sgch possibilities at each and every throw, which means
the number of possible series of four throws without sixes 1s

5'= 625.
The number of cases with at least one six must then be

1296 - 625 = 671

671
1296

and the possibility of throwing such a case would thus be

which gives a 51.8 % chance.

3.2.8 Fxercises

o Bl‘ Figure ;5.2.2 showed the 10 paths between corners AO, BO and
2, B3. According to what principle are these paths ordered? V

2 I?xjo\chth.u the sums in Example 1, Section 3.2.6, always give
sowers of 2, that ve (other-
i‘; of 2, ty'u’)x's, that they give the sequence 1, 2, 4, 8, 16, ... (other-

fise writgen 28, 2, 23 2%, 2¢ )b ] i
. 2,24, ...) by setting x = | in the expansi

N g xpansion

(] +x)forn=0,1,2,3, ... i o

seven people?

EXERCISESIOY

3. In how many wayscan’/ people be placed in a row, for cxample,

along one side of atong table?

4. How many committees of four members can on¢ select from

5. In Scctions 3.2.2 and 3.2.3 we had examples of cqualities such as

(12y=(12) and ()=
5 7 1l 6

Our motivation for this implies quite generally that

ny= (N
(=)

This relation can also be proven with the aid of the formula

ny = n!
(k) k! (n-k)!

How can this be shown? ]

6. On a circle lic 10 points. Fow many chords (connecting lines)

can be drawn berween these points?

lie such that no straight line can be

7. 12 points arc given. They
How many triangles can be formed

drawn through any sct of 3 points.
with three of the 12 points as corners?

3. How many letter groupings of 5 letters can be formed of the five

letters A, B, C, D and E

appear once in any grouping?

a) when cach letter may only
c. repetition of letters is

b) when the condition above is relaxed, 1.
allowed?

9. We return to Problem 2, section 3.2.7. As we remember, a lock
has 10 buttons, labeled O, 1, 2, ... and 9 respectively. If certain buttons

are pressed, perhaps nonc at all, then the lock may be opened by pushing
the relcase button. It does not matter in which order the proper buttons‘*’

are pushed down.
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FIBONACCI NUMBERSI™

Bankers were terrified with the thought that Indian
asily-made falsification, for cxample, with extra
asing zerocs at the end of a number. It was not until the
succumbed, but today we still have the custom of writ-
oll as numerals when we write a check.

1400’s that bankers
matical world not so

ing the amount with letters as w

Yet Fibonacci has become a name in the mathe
ated the use of Indian numerals and having

much for having promulg
d an interesting problem. It

shown their advantages, as for having pose
is called Fibonacei’s Rabbit Problem.

3 3.0 “Fibonacci’s Rabbit Problem”

ntroduced in the second edition of Liber Abaca.
elves with the rabbit problem which, although
artificial, nonetheless was shown great inter-

This problem was 1
We will now concern ours

it must be said to be rather

est. '

Our starting point is a pair of rabbits, one of cach sex. Let us say

this pair is newly born in month 0. In month 1 the couple is sexually

mature and in month 2 they beget a pair of bunnies, also one of cach sex.
o a new pair each month (and by

Each newborn pair ncreases

The original pair goes on giving birth t
i.c. beginning in

“pair” we always mean one of each sex).
the family in the same manaer as the original pair,
birth to a new pair each month thereafter.

month 2 of their lives they give
We suppose further that none of the rabbits die.
We now ask: how many rabbit pairs are th

month 122 We might perhaps formulate the problem
ow does the number of pairs grow month after mont

12> The task is then to construct a table of the number
1f we call the number

erc after a vear, i.e. 1n
a little more specif-
h up to and

ically: h
including month
of rabbit pairs as a function of the month number.
of pairs A and add a subscript with the number of the month, we can
then read the following directly from the Fibonacci text:

A=1 A,=1 A=1+1, ..., Ap=?

[ have posed this problem many times in the tenth gra

keep track of the rabbirs by making

de: “Tryv to

an illustrative figure, perhaps like a

ssesmmsnres

R

CER

T
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table, perhaps with different symbols for newborn, etc. Perhaps some-
one wishes to draw a sort of tree of the rabbit population. Trv now to
find a good systematic method for organizing and accounting for the
rabbit population.”

Since the problem’s solution does not require any real mathemati-
cal knowledge, it is not surprising that everyone in the class considers the
problem, starts with some idea or other, and begins to count rabbits.
After a while the students begin.comparing some of their preliminary
results with each other, and groups begin to form. Some students begin
perhaps with ene method but find it unpromising (usually the work
lacks clarity) and look for a new idea. In some classes there would be
one student — usually one who had difficulty with the subject — who
succeeded in coming up with a clear and correct solution while highly
talented students got entangled in their diagrams.

Apart from the degrce of success, it was evident that Fibonacc
could engage the students’ interest, and most of them gained experience
of value for problem-solving in general.

We will now consider a few variants of rabbit counting which stu-
dents presented to each other. :

L. Trying to draw a sort of population tree did not work out well.
With time, as the months progress, the tree had so many branches and
shoots in different directions that the picture was unclear.

2. A method drawing a separate family tree for each pair of rabbits
used incredible amounts of paper. The student marked off the rabbit cou-
ples with X-es and carried on as in Figure 3.3.1 (but continued farther on).
Time scemed too short for this method, but the idea was undeniably direct.

3a. Each pair was
marked with a one, the
birth of a new pair with
a line connecting par-
ents to children (Figure
3.3.2). The number of
ones 1 cach column is
added up and in this
way we get the desired

X XXX HUXXXNXX X

KXHX X XXX XX
- XX XK XX XXX

X X X X XX X

XXX XXX

X ¥ XX X

X X X X

X X %

X X%

>

XX XXX XXX

XXX XXX X

X XX XXX

X X

X X X X

X X X

X X

A-values.

TR XXX XXX

”
¥
]
“

3b. As in solution 3a.
cach pair 1s marked with a
1 in the beginning but here

-each pair is only represent-

¢d once with a 1, namely in
the month they are born.
When later several pairs are
born in the same month,
for example 5 pairs, then 5
ones are noted in the table
as the increase for that
month. The numbers
which are written into the
table are thus always newly
born pairs. To get the total
number of pairs at a given
time, ¢.g. month 7, we
must add all the ones up to
and including month 7.
Sce Figure 3.3.3.

4a.Circles represent
newborn pairs; circles with
dots are mature pairs; and
darkened circles are pairs
which are at least 2 months
old (“aging pairs”). Month
by month the aging.
mature and newborn pairs
are filled in (Figure 3.3.4).

4b.The same method
as in 4a. but the letters A, M
and N arc used instead of
the circle symbols for
Aging, Mature and New-
born respectively (Figure
33.5).

Month

o;

/.

Number
of pairs

Month 0

1Y)

Figure 3.3.3

Number of pairs

Month
o O
1 O
2 @
3 @
4 @

C Jole)
o0

¥ R S

Figure 3.3.4
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The question now

\4» ,],;:: close.t.o hand: how M"On‘r‘h““"" Tmber ofpa "
) Y surviving (aging and 0 IN o
mature) and newborn shall l IM ]
we note down in the step 2 [A+IN l
tghomg from one month to 3 IA+IM+IN i
¢ next? Empirically we 4 2A+IM+2N 1
21! 5

may have found some va)-
ues, for example
Figure 3.3,

AJ—_—,_‘} A_‘zs
By this time many

‘ upils, : .
Obsel-‘,cd a "C‘J,ulan'tv p p ) ’110”(.

) or in gro
in the numbers obrt groups, have alreadyp

amned. Let us look at these:

A{‘,:I f\‘zs

- Al=l . A;:S

‘ Ay=2 Ag=13

\.{' . . A3=3 A7=21

These
se are ¢
re enough values.

nU”lbelS? :; me UPI]S \‘]l Il(l < (h cover C‘(i ar
O p v Who Y N \ '
c

«“
mechanicallv” j i
! allv” n con 1
larite aoe tinuing on to month 12 i
Yy alwavs holds, < convinced that the regy
gu-

O w
e ' elati
D see any relation between the |

aton, choose to use it

We discover that each ne
r
preceding numbers: 1 + | g
Finally we have

w o]
number is the sum of the tw

ives A. | O nearest
A5 1+ 2 gives A,, 2 + 3 o
E 3 < grves A, cre.

A=A+ A, =894 144 =233

But does this addition rule

Y apply uncondirj
tionally !
: tonally? Might the

qUC.\t (o} P < . AR
] I.~ 2 O ¢
¢r me
10n (,lhl DS ]C ld t 1 I)C[L I th()d ()‘ d()]”g th(. 1ctu

n now some

5. If ne |
) . ot earlier, the
i e
idea of askine- ’ of the ' .
sking: how many rabbit pairs live o Pllplcjs}\vnll come upen the
paurs hive on, an

born when we :

e ¢ BO over fro 1OV many are

‘ g ' one ”](‘)V][} any are new-
& anth t > nex

% 1 o the next? :

FIBONACCI NUMBERSI7S

If we consider, for example, the change from month 4 ro month 5,

then we have:
(1) All pairs of rabbits {rom month 4 live on, i.c. A, =5 pairs

(2) In month 5 as many new are born as there were mature and

aging pairs in month 4. This is as many as the total number of pairs in
month 3, i.e. A, =3 pairs. (See the table in Figure 3.3.4 or Figure 3.3.5)

From this we get Ay = Ay + A,=5+3=8.

The same reasoning gives A, = Ag+ A, and generally

A=A+ AL (n=234.. y )

la we can successively obtain the

With this newly proven formu
VP
e the for-

number of rabbit pairs in any month we wish, but we must us
mula repeatedly step by step.

Is there not perhaps some formula for dire
number of pairs “so that we can get out of adding up
bers”? This question lies near at hand to the pupils. Since this problem
is quite tricky and would require considerable time to develop, I usually
content myself with a formula which the French mathematician J. PM.
Binet published in 1843. In order to keep the formula as simple as possi-
ble we renumber the Fibonacci numbers (1,1, 2, 3, 5,8, ...) with f, as the
first number of A: f, = 1,f,=1,f,=2, f, =3, ctc.

The formula then 1s

fo=-L ’(J—filg—)n - (L?@)} n=1,2,3,...

¢t calculation of the
all the lower num-

This formula was actually known in
the 1730’ to the Swiss mathematicians 1
Leonard Euler and Daniel Bernoulli. There
is, however, from the standpoint of the
pupils, a simpler formula for direct calcula-
tion of lower Fibonacci numbers, proven
by E. Lucas. Like so many other number
relationships it may be found hidden in
Pascal’s triangle. In Figure 3.3.6 parallel

Fibonacci numbers
in Pascal’s triangle
g
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diagonals with a specific slope are drawn. If we sum the numbers which lie
on such a diagonal, beginning from the top, we will obrain precisely the
Fibonacci numbers. An appropriate and stimulating task is to prove, with
the help of formula (1), that all of the diagonals — not only those in the
beginning — give Fibonacci numbers.

We have here a convenient addition formula for the Fibonacci

numbers:
i)

e[

and generally  f, = (“'1 ) + (n-Z) + (“'3) +... forn21,

0 1 2
where the summation extends until the difference between the upper and
the lower numbers is zero in the case of n being odd, or one, in the case
ot even n,

It may now be of value to review the different rabbit-counting
mcthods developed by pupils which were presented as variants | - 5
above. We can differentiate various degrees of abstraction:

In 3a, 3b and 4a we count up ones or figures which represent rabbit
pairs, more or less as we would count several litters of animals. The
degree of concreteness is high here; the achievement is almost entirely in
the construction of a systematic arrangement of the units.

In 4b, letters are introduced in a first step toward abstraction, as
symbols for the different kinds of rabbit pairs.

In method 5 we leave both the symbols and the tangible counting
of rabbit pairs and find the additive structure of the Fibonacci numbers.
We have here reached the level of thought which gives us a general
method, even if it is a step-by-step method. (Formula (1) is called a
recursive formula.)

The more levels of concreteness and abstraction with which a par-
tcular probiem may be solved, the more suitable the problem is for dif-

Yerentiation within a class.

FIBONACCI NUMBERS 177

3.3.3 More on Fibonacet Numbers

Why have Fibonacci numbers become so well known? What inter-

- i istcs Y 2 scame apparent that Fibonacci
- esting characteristics do they show? It became appar

numbers more-or-less unexpectedly appeared in many 'dxffcr'cnt contexts
and that such numbers have a whole varicty of relationships between

themselves. . ' -
Apart from certain aspects which are taken up in the exercises

| i imari - Fibonacci
- below, we will now primarily concentrate on the occurrence of Fib

numbers in the plant kingdom and show their relation to the so-called
L .t "‘ .

%O]dinc:?:?i:st return to our rabbit population and ask: h.ow large are
the fractions of newborn pairs and surviving pairs, respectively, n.1onth
by month? ls it a population which grows younger and. younger in th;:
sensc that the fraction of newborn increases, or is it an aging population?

We select the following notation: ‘

A. = number of rabbit pairs in monthn(n=0,1,2,...)
n ) A

B, = number of newborn pairs in month n.
o

) B . . .
The fraction of newborn is then u, = =2 . The fraction of others
o .

(surviving)is v, =1 - u,.

Taking n up through 12 we get the following table:

n u, A n U, A
0 +=1 —?-=o 7 %-eo,sms... -;%=o,619o4...
1 %eo 4= 8 -‘}%«o_sws... -2}—:--0,61764...
2 —%--o,s —;— =05 9 -§—§-=o,ssxsx... —%-w,mm...
3 -%-eo,n.. -§—=o,66... 10 %:o;szoz... —g;--:o,éxm...
4|+ =04 —g- =04 1 %nosam... -%-0,61805...
5 —:-=o,37s %zo,as 2 -ﬁ'%-omw... %‘g-o,swaz...
¢ —153—-0.38461 L c0g83...
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Can we se S
. * see anvthing c. .
\'& Some students ' interesting in this table?
ents notice that the fractions scem to converge t d{: 3.3.4 Leaf Rotation (Phyllotaxis)
owardfs

_ the value ;
values 0.3820 and 0.6180 respectively. Others notice that u

.-swing up and down i and vf . ) . .
- timcodgicj . n ;)n value — every other time Increasing, eve h B Fibonacci numbers lay more-or-less in a “Sleeping Beauty” statc
>creasing — . : , every otherf’ 4 S , : T

increases \Vithgth .dur fthe swings become smaller and smaller as nf for 600 years, until the 1830%s. We have seen that Euler, D. Bernoulli, and
¢ few more o aid of a calculator one can ecasily extend the table fork Binet had studied them the century before, but they were given at least as

) hore values of n. One finds, for exampl T ¢ table forp much attention by the botanists of the 19th century

) xample, i : v : :
4 Alexander Braun published in 1831 a dissertation with the title

Ordnung der Schuppen an den

“Vcrglcichendc Untersuchung tber die
hung der Blattstellungen aber-

Tannenzapfen als Einleitung zur Untersuc
haupt” (Comparative studv of scale arrangement on pine cones as intro-

U2 = ]50'158;1;)— 0.38196601 r_ duction to a general study of leaf position).
As the title suggests Braun studied the geometry of pinecones.

AI.\' = 4181, Al‘) = 6765‘ AZO = 10946, Of “_hich

it

vio = _()_7__6_5 — 3 o N e
20 10946 0.61803398 Anyonc can understand from the appearance of a pinecone (Figures 3.3.7
o] . . .
v and 3.3.8) that the cone has an architecture which one ought to describe
mathematically. Braun’s research lead to the concept of leaf fraction or
: hvllotaxis
In factit d . . a8 pi axis.
ac oes scem as if, deci : - S
. as if, decimal by decimal =
, the numbers are ¢ :
F: C -
on i ;

Verginge to cer am (lhles. Ill(l"“lo l)y C\Hf]y }ll]lg l] e fractions u ‘lll(i
o bo v fn
o o] t 4
l [ C o o ’ \

‘

. g=0.38196601 and G =0.61803398...

« 1 R noo« n t come as CI s¢ as v wis
1¢ Iractions u 1n vV, seem to S O 18 We wishi to two

numbers g and G : .
X respectively and their approaches are oscillatory. W F i
atory. ¢ F Pinecone with phyllotaxis 8721

let rest ¢} i
S ¢ & . ..
A questions of the existence and of the exact val Figre 307
nti xercises 4 and 5, ‘ values of g and G ¢ Pinecone (From Strashurger, «[ ebrbuch der Botanik”)

and ask here i TN
. nstead: f | .
eventually a : : ¢f limits exist, do they th
; AR ear wi ’ ey then . . . . .
PP th the same values when one besins with ui,t'r | Goethe had emphasized that ordinary upright, growing flowering
S entireiy - . . . ;-
: aves follow two basic prmcxples during growth: the stalk
D o

different i

starting values f

. & Vi or the number irs i

example, if we have 6 newborn pai Zflpaxrs in months 0 and 1? For (al - cal principle) while the 1 ( 11y)
airs an m the vertical principle) while the leaves {usua v

plants with le
grows straight upward

this case we o : . ature pair in month 0?
et a Fibonace . . . onth 0?2 In ; . .
® naccr series which begins with ; form an upward spiral. As the leaves grow outward from higher and
A=7 A - higher levels there occurs a “rwisting” around the stalk from one leaf to
= /‘ A e o v . . . . . . .
’ 1 =8 (7 pairs + 1 newly L i : the next highest neighbor. Besides the vertical principle there is thus also
y born pair) g g P

1 “rotation” with the stalk as axle (Figure 3.3.9). When the plant flowers,

and which continues wit f
continues with A, = 15, A, =23, A, = 38, erc. : the leaf spiral is completed with a crown of leaves (the petals). Braun

; showed that leaf rotation is by different amounts 1n different categories

\Vll.ll }‘. 1« & 1C L ns Q ](i 9 res > e S Ia“ \ere t‘ll‘e
l})})cn\‘ ) th‘ fU y u T I)(
nceion < A

. gproblem is taken up in Exercises 3-6 ctively? This

of plants.
which are well known to botanists.
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- On wlips and gladiolas the leaves grow out alter-
natcl\ to the left and to the right. The ‘twisting” from one
Icaf to the next is thus 1/2 revolution. The phyllotaxis (leaf
fraction) is said to be 172. (Figure 3.3.10).

2. In 3-bladed grasses and meadow saffron the three
leaves distribute themselves around 1 revolution. so that the
rotation from one leaf to the next is 1/3 revolution, i.e., the
phyllotaxis is 1/3 (Figure 3.3.11).

w\
i
2 o>

Figure 3.3.10

3. If we count
the leaves in plants of
the Rosacae family
(roses, raspberries,

Q

Figure 3.3.9

plums, violets, etc.), we find that 5

successive leaves upwards on the stem twist 2 revolutions.

The twist is

thus 2/5 revolution per leaf and the phyllotaxis is 2/5 (Figure 3.3.12).

]

4. In most

‘ cabbages (the
Cruciferae family), snap dragons, plan-

FIBONACCINUMBERSISI

"fractions themselves agree with the population fractions which we com-

puted in the previous section 3.3.3.
If phyllotaxes were to exist with even higher Fibonacci numbers,

such fractions should approach the value g = 0.3820...

Are there such

fractions? Can it be, that the limit g has a very real meaning in the plant
kingdom? These arc questions which it is very natural to ask. The

" botanist G. van lterson counted leaves up the stalk and used a micro-

scope when the naked eye could no longer determine the point of origin
of the very tiny stems on leaves which were just coming out. These stud-

" ies, presented by Iterson in 1907 in the dissertation “Mathematische und

mikroskopisch-anatomische Studien tiber Blattstellungen” and later

furthered by M. Hirmer (1922), concentrated on the vegetative cone, that

part of the plant which produces the very youngest leaf buds. The
results showed that these start, independent of botanical family, with the
0.38 and that the phyllotaxis then deviates from this

leaf fraction g =
more and more as we go down the stalk to older lcaves. There the leaf

. rotation finally becomes what is typical for that family.
All leaf rotations thus begin with the value g = 0.38 at the top leaf
buds. The phyllotaxis thereafter gradually changes toward the family's

Figure 3.3.11

o

Fioure 3312

tain and monk’s hood there are 8 leaves
to every 3 revolutions and the phyl-
lotaxis is 3/8.

5. Dandelions, mullein (figwort
family), potatoes and other plants have
a phyllotaxis 5/13.

6. Now we come 1o the starting
point of Braun’s investgations: the fir.
It has a phyllotaxis of 8/21, both in the
scales on the cone and in the rotation of
the needles. The same values apply to
the pines and larches.

In summary: phyllotaxes of 1/2,
1/3, 2/5, 3/8, 5/13 and 8/21 have.been
found.

What numbers do we have in this
sequence? Fibonacci’s numbers appear,
as we see, in the phyllotaxes, and the

characteristic fraction, for example 2/5 = 0.40 for the roses.
Further examples of Fibonacci numbers in the plant world are

given in Section 3.7.2.

3.3.5 The Golden Section

The results from rescarch on phyllotaxis becomes even more inter-
esting if we relate them to a proportion which was much appreciated
during the Middle Ages and known cven before that by the Greeks, the
proportion which arises from the so-called golden section. Let us take a
straight line AB of length 10 cm, for example. A point S on AB divides
the length into the golden section if the ration of the smaller interval to
the larger is the same as the ration of the larger to the whole interval.

In other words, if AS is the shorter length, the golden section

would imply
AS - SB o letting x = SB: 4—X
SB AB X

1'x=l\:

1




i

i
: 13
A S B
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In order to illustrate this sectioning we let the rectangle in Figur
3.3.13 have length 1 unit and the shorter side width x. At one end of th
rectangle we mark off a square with side x. According to (1) the rectangy
is now divided into golden section proportions if the smaller rectangle i
similar (in the geometrical meaning) to the larger, original rectangle. |f
one solves equation (1), leading to the second degree equation

X'+ x =1,

.. =
one gets as the useful (positive) root the number x = ¥3 =1 = 06133
. 2

! This number determines the golden
X 1-x sectioning of the interval AB and agrees

exactly with the limit G which arose in the
x study of leaf rotation (Section 3.3.4).
(This agreement is proven in the solution
to exercises 4 and 5.)

Figure 3.3.13
tion’s dividing point, the decimeter long

interval is divided into two parts g and G,
—  approximately 0.38 and 0.63 respectively.
Figure 3.3.14 shows this sectioning.

Figure 3.3.14
which the base is to the side as G is to L.

A We take the side AB = 1 dm (decimeter =
10 centimeters), for example, and the base
BS=G dm =062 dm (Figure 3.3.15a).
We measure the top angle with a protrac-
tor and find that it is 36°. Is this value
exact? If that were the case the triangle
would comprise one-tenth of a regular
ten-sided polygon, since the 10-side poly-
gon’s inner triangles have a center angle of

S G =0.62 8
Figure 3.3.15a

360°

222 = 36",

10

v+ «Does the golden section produce such triangles?

" Letws instead begin with a regular ten-sided polygon, remove one
f its triangles, and set its side-equal to 1 unit. We ask, how long is the

i

When S is placed at the golden sec-

Let us now construct a triangle in i

FIBONACCI NUMBFRSIS)

o < o i o . an o 1\'
triar ics tilﬁ Qs W k“)\\ [ll{, l)l 1S )f rieOnOMCt Vvocan dl [
( S1S C t lh"
o [ 10 hO < i rect
= SCO
‘ lA.l_‘._kl.{.‘.__tl_l..L“ _l)_‘_l,b_.‘-_ = sin 1\

the side

base = 2 -side-sin 187
2 sin 18°.
= 0.618

from which

i f the base is exactly G,
well convinced that the length o

e arc now  th he b
b ion triangle fits into the ten side

i.c. that our golden-scct )

how could one show this exactly? e (oosided

How large are the angles in the ‘

v ceianeles? Obviously the base angles arc

olygon's triangles? < e
: 7 . 72° gives the correct su

° since 36° + 2 : ‘
e 180°. 1f we now bisect one of the base

we gct two snmlar tria

d polygon. But

angles, .
angles with a line,
eure 3.3.15b. . .

ne The equation for cqual rations of base to side
BCD and in the large wiangle

in the small triangle
ABC becomes L-x =

X

ngles as in

— %

I S u 1 1S } n cqu fe) 12ure 53150
/ks:
hl Cq ation 1s the same as q atnon (1).

ful root has already been given,

x:G:ﬂ——s’l
' 2

The use
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golden section. Giotro in his famous painting of Franciscus with the
birds placed the painting’s center of interest, Franciscus’ right eye, at the
golden-section proportion along the painting’s diagonal. A number of
Gothic cathedrals show golden-section proportions, as do the shape of
Stradivarius-violins.

In Section 3.3.4 we studied leaf rotations. We can formulate
lterson’s and Hirmer’s research results in the following wav: in the bud-
ding leaves of plants with spiraling leaves there is a common leaf rotation
equal to the golden section’s smaller number, g = 0.38. From this value
the various plants or families of plants then diverge toward the rotation
fraction which is characteristic for them.

An interesting research report on proportions came out in 1854 in the
dissertation by A. Zeising, “Neue Lehre von den Proportionen des men-
schlichen Kérpers” (New Findings on the Proportions in the human body).
As a result of various series of measurements, Zeising shows that on average
the navel divides the human body height into the proportions of the golden
section. In one class where the pupils became interested by this they mea-
sured and calculated their own values and found 0.617 as the mean value of
the proportion foot-to-navel divided by body height (FN/BH).

Of course, there are those who dismiss Zeising’s results as coinci-
dence, but the golden section recurs repeatedly in the proportions of the
arms and of the hands.

Figare 2316

- growth. Itis worth noting that the

EXERCLISES I8

In the newborn child the proportion IIN/BH is roughly 1:2’:
3.3.16 from Morike-Mergenthaler’s “Biologic des Mcnsclujn

s how this proportion changes during
human being, in contrast to the leaves

Iigure
{“Human Biology™) illustrate

of the plants, grows toward the golden-scctuon proportion.

3.3.7 Exercases

1. Drone bees develop from untertilized eggs. in contrast to worll<-

’ r oy ,
or bees who grow from fertilized eggs. In other wards, drones have only
one parcnt, the mother, while workers and queen bees have two parents.

a) Draw a family tree for O =o
adrone bee, going 5or 6 gener- ® -o
ations back, The figure here D D: the drone

(Figure 3.3.17) shows the start
of the tree.

b) Do the numbers of bees in the tree, gencration by generation,
how can this be proven?

Figure 3.3.17

makc up a Fibonacci series? If so,

2. Fibonacci Puzzle

In Figure 3.3.18 is a square with 8¢ 13r
71 units as side (21r) divided into
four parts — two right triangles A and A : ar
B plus two trapezoids C and D. A 7
and B together form a rectangle 8t x
21r. The shortest side in cach of the
four parts is 8r. In Figure 3.3.18b 1t
appears as if the four picces of tl}c
square form a rectangle with sides 13r
and 34r. If this 1s the case, then the

arcas of the square and the rectangle 8 c B

should agree. But Fig:(qu’/
(21c) = 441r*and 13r - 34r = 442r.

Where is “the catch” here?
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. Calcu]atc t 3 (i("\ ll“al l)la( €S, correctiy oundae 1¢ value ()i {
3 O
5 l I d d, t} (& l

uotient g
q between the 9th and 10th numbers in the Fibona

begins with t ccl series whiclgt

© he numbers 7 and 8. In other words, calculate f/f wl:e:f :
o/l |

=7and f, = 8. (f, =

+f,f,=f+f,etc) b

13r A 21r

= the quotient of two

C successive numbe
in the Fibonacd
series 1, 1,2, 3.5
. : 3,5,.
is

] 21r B 13r
/'igln‘c 3.3.18b

t . . . -
hen the next quotient will be P

1

{n+2 l +\'n

Show also, usi :

H ALS usin 1 . g
a8 1 voes 1o o g this result, thar if the quotients go toward a limit &
goes to infinity, then the limit is go toward a limit |5

G= _E_'Z_I_ﬁ
2
5. (For i i
(For readers with experience in the conversenc
genc

How i
o apow may it .be proven that the number G (
vein Exercise 4) trulv is the limit of the se

e series)
introduced in Sec. 3.3.4
quence {v,} in Sec. 3.3.3.>

6. a) Form the 10th
and F, = b.

b) D I It
S [hC \alue Of th
ocs ¢ ratio bC[\\ ee (wo ¢ ve I lb()IHCCl
) n sSuc
/ 5 CeCSss!
hu“ll)\’ls, ] 1 N al)[)l .l(}l a ll”l” no matte \V] at [}1C two st
p Nt < H 10, i L exists, 1 enaent the SK(UIHIE numbecers
omt ire S this himat ! X1 S, In C} (0] }
S ~ D [ ] I f v N d ‘] f - y l: “
]

Le. is there a com rmit f.

; mon hmit for all ! 1

he Al 5o - R

e pasire possible Fibonacei series? (Let a and b

o :
Fibonacc er | i
1 number if the first two are F, = 3

arring

Show that the Fibonace series which

7 » beoins wi ‘
1s-the sequence G, LG+ 1,2G+3,3G.+5 e vith G and 1 (thar
; ] : Ty

- ) s identical with the geo-

4. Show that i‘f‘“‘.}

metrical scquence ,
G 2

§. For numbers in the Fibonacci sequence 1, 1, 2,3,5, ... itmay be

shown that

i

f_\ :1+1=1.‘+1:
fi=3=4-1=2-1
ff:5:4+1:22+1:

(= 8=9-1=»-1

f,=13=9+4=3+2

Does this regularity continue — and how can it be written as a gen-

eral expression?

3.4 1,2,3,4,...and 1,2,4,8,16,...
Two Important Growth Principles

The sequences 1, 2,3, 4, ... and 1, 2, 4, 8, 16, ... have become a part
of evervday folklore through the classical story of the inventor of chess.
According to the story, the inventor, who was promised whatever he
wanted as a reward by an Indian prince, asked for one kernel of wheat on
the first square of the chessboard, two on the second square and cach
time double the amount on each of the other 62 squares. The total num-

ber of kernels would be

[+2+4+8+...+2¢

(where the last term is the product of 63 two’s multiplied together).
Calculated out this became some 18 billion billion kernels of
wheat, or more than the harvestin the whole province!
If the inventor had asked for 1 kernel on the first square, 2 ~

second, 3 on the third, ete., then the reward would have re~

modest level of

. \-\\\

6465
2

J+2+3+4+...64= =2
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We shall soon see that both sequences of numbers in the title play

important roles in various topical applications.

3.4.1 The Piano Keyboard

Figure 3.4.1 shows the kevboard of a piano, which most often
spans 7 octaves plus 2 extra white keyvs and 1 extra black on the left.

Each octave has 7 white and 5 black keys which together give 12
tones. The so-called octave “just to the left of the piano’s keyhole” goes
from middle C to C in the octave above (¢'). If we count the white kevs
with C as the first, then we come to ¢' as the eighth key (and from this
the name octave). ¢' is the first note in the next higher octave. Piano
tuners tension the a' string so that it vibrates at 440 vibrations per sec+
ond. The tone then has the frequency, as we call it, of 440 cycles per sec-
ond, or 440 Hertz (Hz). Going from note a' to a* in the next octave, that

e

A A A

: ‘.
a ;'l 2 a) a

Figure 3.4.1

is taking a 1-octave step upward from a', we get a tone which, when
played at the same time as a', is in perfect harmony with a'. Playing the
white keys from a' up to a’, it is for our tonal experience as if returning to
the starting tone, but on a higher level. We have taken a step upward on
the tonal scale which feels completely natural.

The tonal ear is very sensitive to the exact agreement of a’ relative
to a'. When tuned clearly, a¢ has exactly double the frequency of o', that
is 2+ 340 = 8§80 Hertr.

In this wav the frequencies increase octave by octave, and we have
(intleriz)

1.2.3.4., ... AND 1.2.4,8,16,...189

1 = 440

ai =2 44C = 880
=4 440 = 1760
2= § - 440 = 3520 Hz

i}

Taking a 1-octave step downward instead, i.c. to the left on the

| 1 d re
b keyboard. we get (using the common nomenclature)

a= L.440=220Hz

2
A= 1l.440=110
4
A= L-440=55
8
Ar=-L.-442=275
16

The a-notes thus have the following frequencies:

As= 4 - 440 al=1-440
To16 X
A= L4440 al-2- 440
8
A= 1.440 at=4- 440
4
a= 1440 and 2t =8 440
2

If we start with ¢ instead of with a, the sequence will be similar, but
440 is replaced by another frequency. Letus call it f:

Cl.—_-l.--f CI=2'f
S -
c=1L.9 =4
4 -
c=L.f ¢ =8-f
2
¢= 1~-f and ¢ =16-f (whichisthe

highest tone on our piano)

The coefficients 1, 2, 4, ... always appear when we go upward by
octaves and the coefficients % % %. ... when we go dowx:nvard by octaves.
In both cases 1 corresponds to the frequency we start with. o

We now leave the world of tones temporarily and take a look at
bacteria and radioactive substances.

+

et os T A

e oA
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\'4‘. 3.4.2 Bacterta and Radioactize Substances

If a bacterial culture or a culture of veast cells is allowed to grox
under constant and fivorable conditions, including sufficient nourish
ment available the entire time, then the number of bacteria or cells dou
bles with certain intervals of time. If the number of b

A, then this number will grow in the given time interval, let us say
hours here, according to the following table:
Time, hours 0 3 6 9 12 15

Number of A 2A +A SA 16A  32A
bacteria

But as soon as the nourishing culture begins to dry up, this regular-
ity stops; growth is slowed. Growth can stop; the number of bacteria

- ‘e ‘re iource 3.4
) Number van even decrease. F.xgurlc 3.4..}‘,
\( illustrates the table in diagram

15 | form.

10A doubling numbers 1, 2, 4, S, ...
play an important role.

covered by the husband and wife
A Curie team (polonium in 1898 and

0 Mttty + ' radium in 1902), it was found that
5 13 Hours

Figure 3.4.2 and that during a certain specific

tumne, for example 5 days, a sub-
stance would be reduced to only half of its origin

Whenever we

;1! amount,

begin our measurement, after the 5 davs one half

of the original amount of the substance will be left. Each radioactive
substance has its own so-called half-life.

Uranium (with atomic weight 238) has a half-life of 4.5 billion

% vears, radium (atomic weight 226) has 1600 vears, polonium (atomic
“Weight 210) 139 days, and a polonium isotope (atomic weight 214) just

. '0.00015 seconds.

acteria at time 0

In vet another case do thef

Not long after the firstf
radioactive elements had been dis- E

radioactive substances disintegrate §i

AND|‘2.4.S.!6..._§

V,2,3.04, ..

art with and the
' [ ial wei rrams to start with anc
If the quantity of material w cighs m gr

- Y 1y'S, W \ave the 1 \. (. 4) Il S[X.l‘l’ll thk di\in(k‘_"ﬂ(’
i 1 winge tat lC iU L‘
h. lf litL 1S l d‘ )\, ¢ } N *Ol 0 1 14

ing principle:

) . 3T 4T 5T
Time (number of days) 0 T | 21 SN
Weight of substance m Ym /m ‘1 Y

In grams

M 1 ! t -
Here we see the halving numbers %, % , %, ?tc. o s
1 bstance weight is shown in Figure 3.4.3.
A curve of the decreasing subst: ! how -
1 1 yers 4,8, L as S
Earlier in Section 3.1 we wrote the numbers 1, , S,
of 2: N
= 2°
2l
2.‘
— 2.‘
= 2! etc.

o~ N —
I

If we go from the bottom up in this column, \;Je fllrid ih;z:;f:{:u::;;
bers (on the left) are halved each step upward whi ;t\Lhci‘sprmgon,O the
powers on the right) decrease by 1 with every step. orzta i as
been defined as the exponent of 2 for the numl.)cr 1, x.c.] =1

If we continue to halve on the left, we will get values

, L, etc.
16

powers of 22 The natural thing would

k)

o
o0 p—

1

b

2

Can we also write these as

then be to write

P TIPE R P NP
S 4 8 16
) s 2
We now draw up a table which shows how the inverse parts 2 }‘md
: . e d
1/2. 4 and 1/4, ctc. also correspond to each other with regard to the
exponents.

: 1 atural?
Why is the power form (*) so logical and nat A ior arith
The answer is quite simply that the rules which are used to :
h i 1 ive Integers
tic with positive exponents will also work with 0 and negat g
me

as exponents.
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We content ourselves here with a few examples which show the

applicability of the three main rules for exponent arithmetic.

(1) 22-22=2.2.2.2-2.2-2

Number  Power Exponenmt
=2 =2
16 2% 4 - : -
’— ) 2 = 222 o 3
r 8 2! 3 - »  2.2.2.2
1 2? 2
(3) () =2 20 28 2z
2 2! 1 =2
1 20 0
Riuddes: (1) 2024 = 2r -4
1
3 2-t -1 9P -
2 & — 9P9
2 2% =2
Loge -2 2
I (3) (27 = 2
N
L, i
- e — Thesc rules can be shown to apply

for any choices of integers for p
and g. In a number system such as this the exponents are called loga-
rithms, or more preciscly, base-2 logarithms, when the base is 2, as here.

One writes

log,8=3 log,4=2 log,1 =0 log, é‘ =-1 etc.

Analogously we may construct a table of the basic numbers in the
10-system and introduce base-10 logarithms:

]()gm]OOO =3, log,OIOO = 2, IOglclO = I, logl:l - O’ loglco’ 1= 'l, etc.

Can we also write numbers such as 17, 145, 5 and 2, 8 in power
form? Can we determine (define) numbers x and y such that, for exam-
ple, :

13=10 and 13 =2
in the 10- and 2-svstems respectively?
Yes, we can and it has been done. The x and y values in question
re called the base-10 and base-2 logarithms, respecuvely, of the number 13.

For every positive number whatsoever one can determine a base-10

logarithm of 3 base-2 logarithm or 4 fogarithm in any other base so Jong as

1.2,3.4, ... AND1,2,4,8,16,..:19)

itis positive. We cannot go into how one does this computation, but we
can take a look at the graphical equivalent (more or less accurate dcpcnd?
ing on how well we draw the araphs) in the curves y = 10° and y = 2
respectively and the figures show how one graphically finds the logarithms

log,s!3 and log,13.

At b
4 16
100 1 =
13 > y
vo= .
50 [ A 4
L
3. / 2
10 _../q' — X 17 + 3 ;# x
1 ) 0 1 2
’ l\ = 1 : x == 3,7
] 4 Figure 3.4.5
o Graphical determination of log,13

. . . . R
Cmpl)u‘d[ determination ({/ /()gl:l.)

If we construcrt a scale for the numbers in the 10-system alongside a
linear scale (equal spacing) for their base-10 logarithms, as in Figure

3.4.6, we call the resulting scale for the numbers logarithmic. '
On the slide rule’s main scales (usually called C and D and some-

times marked with an x) the numbers go from 1 to 10 and are fitted to a
: . . |
linear scale of logarithms going from 0 to 1 (Figure 3.4.7).

o 2

log,cx

Figure 3.4.6
Logarithmic x-scale

We now return to the world of music and shall get 1o know some-
thing about the difficult task a piano tuner faces.

‘Nowadays the slide rule is of interest only in connection with the concep-

tion of the logarithm and the pupil’s understanding of it

v
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Figure 3.4.7
Slide rule scales

3.4.3 The Piano Tuner’s Difficult Task

. We kn‘ow that the musical ear is very sensitive to octaves. The
ano 1
[ph“ htur;er must therefore tune pure octave steps; this means physically
at the frequency exactly doubles from one tone to the same tone an
octave higher. ‘
The “fif ?’,\'}olmxst: by contrast, tunes his of her four strings in fifth
e “fitth” interval corre i ' ( ‘g
e sponds to 7 so-called half-tones. (Sec Figure
4.8 for an example.)
13 ‘ 1 ‘ ' '
i6 ) Q9unt1ng from ¢, the fifth white key to the right
+ 5| 7 is g which is the next hig if
gher fifth.
. The violin strings are tuned so that they give g. d,
s R e . . e N
a', an'd e, forming pure fifth steps upward. A pure fifth
s;lep is, second to pure octave steps, that interval which
the ear most easily distinguishes. In terms of frequencics

¢ d e g ;
g t};e fifth step upward means that the frequency 1s mulu-
Fifth P ied b)’ 3

¢ 2 =1.5.
2

Figure 3.4.8 .
Looking at a piano keyboard we can ask oursclves:

o how many fifths cover the 7 octaves from A, to a* or —
which is the same thing — from C, to ¢*? )

We can count 7 half-tone steps at a time (equalling a fifth) and find |

as in Figure 3.4.9 that 7 octaves correspond to 12 fifths.

LA UATT

|
LAy L \

L S S e
L < ! ¢
|
!

5

3 4

~
[

1gure 3.4.9

13,4, .. AND 1. 2.4, 8, 16, ... 195

On the piano, 12 {ifth steps (av 7 half-tones each) are equal to 7
octave jumps (at 12 falf-tones cach). '
With A, as a starting point w

¢ have the frequency 27.5 Hz (cps)
After 7 octave-sized steps, that is, after Ty,

7 doublings in frequency, we

come to
A= 128275 Mz

Let us instead take twelve fifth-sized steps from A, Here we get

the frequency of a* to be
at=1,51,5"1,5...- L 5-.27.5Hzor npproximately
at = 129.75-27.5 Hz

But 129.75 - 27.5 must surely be bigger than 128 - 27.5! The

twelve pure fifths give
A= 129.75-275= 3568.1 Hz

while the seven pure octaves give
4= 128.27 - 5=13520 He.
How can this be reconciled? In no other way than that the ptano
1gs, makes all the fifths a little lower. His difficult

¢ fifths (and other intervals) just impurely
is just right, the piano sounds

tuner, among other thir
task is in fact to tunc th
enough. When the degree of impurity
good! ‘
We have just seen t
instead of 128. How large should the fifth step be,
[f we call this unknown, slightly lower fifth step

hat the power term 1,5' gives the vaiue 129.75
if not 1.5?
“x", then we have

the equation
X =128

- x- x- x = 128

thatis X+ X+ X°® X° X- X° X° N7
ightly lowered fifth step to

The solution to this cquation gives the sl
be
x = 1.498.
This fifth is called the equal-tempered fifth.
Onc fifth up froma'is e’ If this is a pure
will be 1.5 - 440 = 660 Hz. 1fitis tempered, the
Hz or 659.12 Hz.

fifth. the frequency of ¢
frequency is 1.498 - 440
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However, it 15 not only the hifths which need 10 be tempered but
other intervals as well. And finally it is the h: lf to all of which must
be the same size and adjustcd so that 12 h.ur»mnc stcps give an octave.
The piano is then “tuned to equal ter ‘; erature.” The cqual-temipered
pinno troduc cdu g Bach’s
clatively c!v

T nkst lcnpe ing it bec possihlc to go
H rm i 'u;

between one and a or} ver., Wi t}

dm '

s f

ulating between keys

ttlc ‘Das wohltemper
. of us probably
i with which the coll ct ion bcg ns. Diagram 3.4.10 illustrates graphically

. how frequency “g

 the octaves with each other and feel w

st
. and the air works in its turn on the ear drum. This physical “teasing” is

. transmitted thereafter to the inner ear \the hammer, the anvil, the stirrup,
- ete.) and contributes in a puzzling w

- we take the octa
. increase step by step?

I

1,2,3.¢4,...AND 1,2, 4,8,16,...197
and others): twelve-tonce

s (classical, romantic
n, and mod-

beside the older forn
. so to speak, walled-i

music. Before tcmpcrinf' each key
sed pr oblcn As a tribute to tempering Bach

oll ction ot} eludes and fugues which 1rrytl

rte Klavier” (The cqual -tempered pianc). Many
easy-to-play Prelude in C major

ote thc el I\ now
recognize the relatvely

rows” on the equal- rempercd piano.

3.4.4 Some Psychological Ovservations

If we hit the keys for A, A, A, 1. 2%, 2’ and a* on the piano, we hear

~ “the same” a-tone “repeated” but at steadily higher octaves. The experi-

rightlv speak of octavesteps. We identify

ence is truly such that we may
are taking equal steps upward as

far as frequency goes
If we go to thc xternal, physical ¢
g, for example, as reality. It is that which puts the air into notlon

ounterpart, we have the vibrating

- to the perception of the tone

which was sounded through space.
Lct us once again look at the fr c‘quency of the vibrating string as
ve steps on the A-kevs. How does the frequency

Frequency (Hz) Frequency Increase (Hz)

A, 275

A, 55 §;5

A 119 110
220 220
o 440
o 880
L6 1760
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\‘; . We see that the increases get bigger and bigger. From A, to A, the]
increase is 27.5, from a* to a* it is 1760 Hz. How does it come to be that]

.. we identify these increases with one another? |

“In the table above, the increases are calculated as absolute, additive

1 increments. If we instead ask about the ratios of the frequencies, the
answer is that the ratio for the octave step is always determined by the

" proportion 2:1. (We could, of course, also sav that the relatice increase is
alwayvs 100%.) -

Our musical ear thus relates to and senses the ratios of the frequen-
cies. Our perception does not follow passively the frequencies which the
physical stimulation presents to the musical ear.

How do we react to stimulation levels in other kinds of percep-

fessor of anz i ' 1pzi
of anatomy and physiology in Leipzig.
Weber carried out measurements in what we today call experimen-
tal psychology. We will consider a few simple examples here in order to
iHlustrate whar Weber discovered:

Y ' 1. We experiénce not only tone highness and lowness in music but
also tone loudness. We have a special knob or button on the radio
receiver for “volume,” with which we make the sound louder or softer
More ;1.nd more has noise become a subject of research. We hear now and
then of noise damage to the ear, read of sound levels given in decibels, etc.
The question now is: how do we experience physical sound level
increases? Suppose that we hear a jack-hammer from street work in the

| distance. After a while there are two jack-hammers in operation simulta-
neously. If one more jack-hammer, a third, is now put into operation we
| will experience the sound level increase as less than the previous increase,
| despite the fact that the increase in sound energy must, of course, be the
same as the earlier increase. '

But if two new drills had started up, so that the number of
machines had doubled again, then the new increase would be experienced
as equal to the earlier, first increase.

In the case of sound level, too, it is the relative increase in the external
stimulation (within certain limits) which is decisive for our comparisons.

g . 2. During the time of classical Greece the stars were divided into
.$0-called orders of magnitude. The name is a misnomer, since it is not a

tion? This is a question which fascinated E.H. Weber (1795-1878), pro- §

1.2.3.4, ... AND1,2,4,8,16,...199

question of the size of the stars but of their apparent brightness, i.c. of
the light intensity which we experience. .

The bx‘ightcst were classified to have first order of magnitude,
brighter than those of the second order of magnitude, cte. The Greeks
used six orders of magnitude for the stars they could sce. Stars of the
sixth order arc quite dim.

In cameras usually a light intensity meter is built in. Earlier it was
common to use a scparated light meter, held in the hand. When
astronomers began to measure the intensity of the starlight reaching
carth, they soon found that the step from onc order of magnitude to the
next lower order of magnitude (i.c. to the next brighter group) quite
accurately corresponded to a factor 2.5-fold increase in brightness of the
light.

In other words, if the sixth order of magnitude has light intensity

L, then the intensity of

order 5 1s 25L = 25L
order 4 2.5- 25L = 2.5L
order 3 25-25 - = 25L
order 2 25-25: = 2.5'L
order 1 2.5-2.5" 2.5L

We once again meet a physical multiplicative factor.

In more recent times orders of magnitude have been defined rela-
tive to cach other by setting 100 as the ratio of first order light intensity
to sixth order intensity. Instead of the five steps from the 6th order up to

1st order, having a factor of

2.5 (see table above) = 97.66,

they are now given the brightness ration of exactly 100. In order to agree
the factor 2.5 changes slightly, becoming about 2.51. (The exact value is
the solution to the equation

x-x- x- x+ x = 100

and 1s written 5V100.
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3.4.5 Weber-Fechner’s Law or the Psycho-Physical Law

Is it possible to measure inner soul experience, in particular, our
perceptions? This and similar questions have undoubtedly been asked
and probed into by more than a few minds through the ages.

Galileo strongly advocated the view that science must be based on
measurement. His expression, “That which is not measurable must be
made measurable” may seem paradoxical if one does not understand it in
the sensc of: “that which today is not yet measurable must be made mea-
surable in order to be amenable to research.” Galileo was one of those
who first divided the senses into primary sensory qualities (perception of
number, length, shape, etc.) and secondary sensory qualities (experience
of color, taste, smell, ctc.).

Is it possible to give our experience of tone level or light intensity a
certain quantitative or perceptive value? For example, can one set up a
perception scale for loudness, as has been done for temperature, length,
weight, etc.? Where, in that case, should the zero-point be set? Or must
we limit ourselves to comparing different degrees of perception with one
another - if that is at all possible?

Such questions engaged Gustav T. Fechner about the year 1850.
Fechner had had a dazzling academic carcer, becoming Professor and
Chairman of the Physics Department at the famous University of
Leipzig at the age of 33 (in 1834). But he apparently overworked himself
in a variety of ways and left his teaching chair in 1839.

Fechner attacked his new research with great energy. After pub-
lishing a few short papers in 1858 and 1859, he gave out his book
“Elemente der Psychophysik” in 1860, a famous work on “the exact sci-
ence of the functional relation between body and soul.”

Did Fechner succeed in capruring percepuions of the soul as quant-
ties, on scales? The answer is surprisingly more-or-less “ves,” if we limit
ourselves to a few areas, primarily tone level, loudness and brightness -
those arcas we have already touched upon. We have actually already
learned that which Fechner stated in his psycho-phvsical *law”, that per-
cepuve level grows .with cqual steps when the physical stimulus grows
muluplicatively in equal steps; or, expressed differentdy, when the sumu-
lus grows'relatively in equal steps.
cannot, of course, be expected to apply over an
unlimited range of perception. For one thing. the stimulus (tone fre-

]

Such a “law’

. quency, loudness or light level)
b must be strong enough that we
E clearly perceive something above
- the so-called stimulus threshold.
F Secondly, the stimulus must not be

5o strong that we begin to

j approach the level of pain or other
E reactions which disturb our senses.
' We cannot here go into a
| thorough study of Weber-Fechner’s
E law and the criticism of it. Instead
we will use a graphical presentation
10 give a clearer picture of that

¥ which Fechner asserted.

In Figure 3.4.10 carlier, where

| 2 curve is drawn of tone frequency,
E we used common linear scales on

' both axes. How does the diagram

i look if we replace the vertical fre-

quency scale with a logarithmic

. scale but let the horizontal x-axis

remain linear? (For reference to

E the concept of logarithmic scale,

see Section 3.4.2.)
For this we mark off the fre-

, quency values for the octaves yith
equal spacing along the vertical
axis; the length of the interval can
be chosen arbitrarily. How do the
points now lie?

We set out the points for -3
and 27.5, for -2 and 55, etc. and
' finally for 4 and 3520. We note
that these points now lie in a
straight line. For every step side-
- ways the point moves vertically by
the same constant amount, equal to
- the distance chosen tor the vertical

1,2,3,4,..., AND ,2,4,8, 16, ... 1101

Frequeney (Hz)

=

Graph on logarithmic paper
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3.4.6 A Little Population Mathematics

When youth are called into the army, their intelligence, among
other things, is tested. Some of the test problems have been arithmetic of
the following type:

Example | A numeric sequence begins with the numbers
3,6, 9 12...
"What comes after 12?2

Example 2 What number comes after 3, 6, 12, 24, ... 2

I have chosen two simple examples. We answer with 15 and 48
respectively. More correct would be to say: the simplest continuation
gtves 15 and 48. In the first example we observe a constant increase (3),
in the second, a doubling of the numbers, step by step - the sequence has
the multiplicative factor of 2. We might remind ourselves here of

Moser’s circle subdivision problem in Section 3.1 where we successively

obtained the numbers 1, 2, 4, 8, 16 and were inclined, perhaps even
t~ook it as'obvious, to predict 32 as the next following number. In actual
fact the next number after 16 was 31.

If in advance we state that we consider only sequences with con-
stant increases (or decreases), or with constant muluplication factors, we
may unambiguously. state the continuations in the following examples:

Example 3a) 7, 11, 15, ...
3b) 23, 16, 9 ...
3¢) 80, 20, 5...
3d) 2, -6, -14, ...

(It would have been sufficient to give only the first two numbers.)

The numbers are 19, 2, 1.25, and -22 respectively.

Sequences with constant multiplication factor (Examples 2 and 3¢)
are called geometric sequences. If the sequence on the other hand has a
constant increase (Examples 1 and 3a) or a constant decrease (i.c. a nega-
uve increase, as in Examples 3b and 3d) then it is called an arithmetic
sequence.

Figures 3.4.13a and b illustrate these two types of sequences geo-
metrically (see also Section 3.7.2).

How does the population of a city, a coimtr'\", a continent, vr of the

world grow?

CAND 1, 2,4,8.16,...1105

Figiore 3.4.134

This is always a current question.
More than anyone cise Thomas Robent
Malthus (1766-1834) has become known
for his investigation of this question.

Malthus, who studied at Cambridge,
was ordained as a priest in 1798 and that
same year gave out a book called “An Essay
on the Principle of Population As It Affects
the Future Improvement of Society,” which
brought sharp criticism and started a lively
public debate in England.

The book was published anony-
mously and directed toward an optimism
for the future which had come to expres-
sion through the anarchist Godwin. The b
Liberals had introduced poor-laws in h,
England in 1796 to create a better society. hy
Such a measurc would, according to by
Malthus, son lead to worsened conditions

for the poor. The supposed improvements
would stimulate increased nativity and after a time the growth in the num-
bers of poor would lead to new and even more difficult times of need.
Malthus noted a number of factors which, according to him, acted
to limit the population increase: poverty, sickness, and war. If such

Arithmetic sequence

Figure 3.4.13b

Geometric sequence

- inhibitors do not exist the population continues to increase geometri-

cally, i.e. the number of people forms a geometric sequence, when equal

points in time are taken.
Malthus’ starting point was that “a population of a thousand mil-

lion doubles just as casily in 25 years as a population of a thousand.”

In the Northern States of America..., the population has been
found to double itself, for above a century and a half successively, in
less than twenty-five vears. — In the back settlements, where the
sole employment is agriculture, and vicious customs and unwhole-
some occupation are little known, the population has been found to
double itself in fifteen years.

But the food, which shall support the increase of the greater

population, is by no means obtained easily.
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Hf*rC we come to the main thought in Malthus’ presentation: whild
pgpulanf)n increases geometrically, food production can onlv increa
- arithmetically. '

' --- supposing the present population equal to a thousand mil-
lions, the human species would increase as the numbers 1, 2, 4, 8,
16, 32, 64, 128, 256, and subsistence as 1, 2. 3. 4, 5 6,7, 8.9
In two centuries the population would be to the means of subsis-
tence as 256 to 9; in three centuries as 4096 to 13: and in two thou-

sand years the difference would be almost incaleulable.:

o In other words: if a population of 1 billion people today divides up
1 unit of food stuff among themselves, then 256 billion people 200 vear E
later would have 9 units of food to live upon. Poverty would increase’
enormously - i inhibiti Cto [ : 1
ously — if nonc‘: of the inhibiting factors of nunger, sickness, and
war were to slow the increase down.

_ Criticism led Malthus to col
JAPAN lect empirical evidence for a new edi-
tion of the book. It was published in

Year Mill inbab. 1803 after Malthus had undertaken |
1850 27 study trips to Germany, Sweden,
1870 32 Norway, Finland, and Russia. He |
1890 40 stood firm by his basic hypothesis in .
1900 L 44 the new edition but pointed out that B
1910 " 50 other factors than hunger, sickness, ‘
1920 56 and war could hold back the popula-
1930 - 64 tion increase and improve the supply
1940 73 of the means of subsistence. As
1950 84. examples of favorable positive fac-
1960 94 tors to raise the minimum level of
1970 104 existence Malthus suggested late
1980 117 marriage, voluntary restraint, and the
I formation of new habits. ‘ A

" Does the hypothesis that a
opulation grows geometricallv i al periods ivi i
pop ‘  grows geometrically in equal periods (as long as living condi-
: * The meaning here must te that the fraction 27(n-1) would be incredibiy
large. . )

1,2,3,4, .. 0 AND 1,2, 4,8, 16,...1107

tions are good) hold true for any country or region of the world? lLetus
look at Japan:

Has population increased in geometric sequence in Japan over the
span 1850-1970 or during any part of that period? (Sec table). Diagram
3.4.14 shows graphically how Japan’s population has increased. In order

“to study the growth of population we will acquaint ourselves with a

graphical test method which reveals very simply whether a growth is

geometric or not.

Semi-Log Diagram:

In Section 3.4.2 we introduced the concept of a logarithmic scale.
On such a scale a geometric series is compressed so that the numbers in
the geometric series are put down with equal spacing. What does the
curve of a geometric sequence look like on a diagram where the horizon-
tal scale for the order in the sequence is linear, while the vertical scale for
the numbers themselves is logarithmic? Sich a diagram is said to be
semi-logarithmic. Graph paper is available with pre-printed scales to

use. This paper is called semi-log graph paper.

Mill inhab. 30 ==
A 24 : : - e y s
=== et g
182 1 ==
== = =
T = e
12 1 t f o 1L : ey
' it e
- - Ty
50 'g
8
7 9
A‘ —
ic} [3 = =
- _ == =
z t s £
1850 1900 1950 vear
<
Figure 3.4.14
. ==
3 =
The result may be seen in == ERHE
[ 1 2 3 n

Figure 3.4.15. The curve is, quite : _
. . . . . Figure 3.4.15
simply, a straight line. Geometric

growth gives a straight line in a semi-log diagram. This is a pracucal

method of graphically testing whether or not a given growth is geometric.
In Figure 3.4.16 we see the population of Japan on a semi-ldg plot.
The diagram in large measure lends support to the hypothesis that
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Mill inhab.
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~t
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«

-

1850 1900 1950 2000 year

Figure 3.4.16 .

growth has been geometric. The results are not equally convincing if one
studics, in the same way, the population of the United States for the same
period...

Malthus is still very timely. In a newspaper account from the
International World Population Conference in Bucharest 1974, could be
read, among other things, the following:

The ghost of the English doomsday prophet Malthus hung
over the congregation after the opening speech.... Malthus became a
weapon at the conference for those who wanted to get at the devel-
opmental pessimists and defenders of the privileged. China and
every one of the attending African and Latin American nations
quickly shot at what they thought were “nco-Malthusian™ tones in
the plan. This group considered that the plan, developed by the
United Nations Commission on Population, placed far too much

emphasis on family planning.

It goes without saying that Malthus can spark strong interest 1o a

tenth-grade class.

EXERCISES {109

3.4.7 Exerases
(. What are the fourth and fifth terms in the arithmenc sequence

13,4 5,8..°

5 What are the fourth and fifth numbers in the geometric

sequence
5 8 12.8 ... 2

3. The numbers 12, 6. and 3 are the beginning of a decreasing

geometric serics. Which numbers tollow?

4 The angles of successive swings of a pendulum form a decreas-
ing geometric scquence. Determine the angle of the sixth swing if the

first three swings are 15, 12% and 9,6°.

5. Figure 3.+4.17 shows a
graphical method of constructing
a geometric series using only
compass and straight edge. The
n-lines are drawn vertically from
the base line g up to the line a.
Circular arcs are rotated from a
down to g, using O as pivot cen-
ter. The distances from O to the
points along g now form a geo-
metric series. The first two num- 2, =3 2 a5

Figure 3.4. 17 ay /

N

bers in the sequence in the figure .
are 3 and 4. First the distance 3 ¢m is marked off from O to the line n

N . . ,
with the aid of a compass. This intersection along n determines a's slope.
Line a can now be drawn, and the method of constructing a geometric

series with 3 and + as starting numbers may proceed. -
Letting 5 and 8 be starung values, determinc gra-phxc.al\y the fifth
number in the sequence. Compare with the results in Exercise 2 above.

6. A mirror is found to reflect 95% of the incoming light. What per-
cent of the light is lost if light is reflected successively in 4 such mirrors?

-

+
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\* 7. Russia’s population grew as follows over the period 1850-1970: | : N chi lure and set
’ ' C T'CPCAI'L s PI'OCCL r__c art 34
’ — 4 . L . -
Year : 185C -70 -90 1900 -i1C -20 -3C -40 -50 -60 -70 . ' 2 - b
Million people 61 75 99 111 140 134 156 174 181 214 245 b 5 21
3 ' 29 36

Ilustrate thi ; ith a ple hat e 4 ' ' :
this growth with a plot. What can be observed between ] Finally we do the last sum, which we call the botrom number:

1910 and 1920? :

Now. illustrate the population growth on a semi-log plot. If the § ’ v ' N
curve obmmed 1s a straight line for any period of time, it indicates tha ' a N B
population growth was exponcntial (geometric) during that time period. » .

; . | 65

- Our choice of initial numbers led to an odd bottom number.
The question now is: can we find some simple rule with the help of
which we can predict whether the bottom number will be odd or cven, as

3.5 The Step from Ari i
. rithmetic ro Alge .
P te Alstbm ) soon as we know the four starting numbers?
For example, if they are 1, 9, 16, and-8, will the bottom number be

3.5.1 \V/Jy “Algt’b)‘(l e ’ odd or even? L
: Without exception the students add up the sums to see what
bottom number appears. They choose their own examples to try out, and

1 ask them to be alert concerning the results so that we can come up with

, . ‘\\'»’e use the word “algebra™ here in the limited sense of arith-
metic with letters and “arithmetic” in the sense of numerical calculations.

Many pupils find calculation with letters a, b, ¢, x, v, etc. to be
abstract. For the majority numerical arithmetic is u.msidc’mbly more
concrete, and it is truly an important pedagogic problem of how to intro-
duce arithmetic with letters. Often — for many pupils — algebra seems
unnecessary. The teacher will certainly hear the question “D\X/hat’s this
good for? Does it have any use?” ' ‘

Such a reaction is quite natural if the pupils have not at a rather
carly stage — as soon as the prerequisites exist — had an experience of
the “power of algebra.”

Let us proceed directly to a problem concerning numbers:

\Vc choose four arbitrary numbers — for sim;;licir\f's sake one- or-
rwo-digit numbers — and write them beside one another with a little
space between, on the blackboard. Suppose we have chosen the numbers
3,10, 4, and 17. We now add adjacent numbers two at a time and write

a theory, at least a guess, from our collection of examples.

Somecone soon points out — perhaps immediately - that if all the
given numbers are even, then the bottom aumber will also be even. The
all the numbers are odd, someone adds. And now groups

»
1
%,
:
3
b

same applies if
of pupils go exploring in different directions.

Some groups investigate the effect of the number of even num-
bers in the beginning set of four. Other groups investigate if the sum of
the given numbers is of any use. Someone says that thev have discovered
that the bottom number is even, if the sum of the inttial numbers 1s even.
\Will the bottom number be odd, in this case, if the inital numbers™ sum
s odd? The scarch becomes more intensive. The conviction that the sum
of the initial numbers determines the even-oddness of the bottom num-
ber grows stronger. “All our examples thus far agree with that,” point
out some pupils and they begin to consider the result as certain.

We gather together again as 2 class and listen to this theory
3 . . . about .thc sum of the initi‘alhnu.mbers. “How many examples would you

14 5 ) & deem it necessary (o exhibig, in ord‘er for the theory to be pmvcd? ]
- once asked in a ninth-grade class which had not seen the problem betore

their sums one row down in the spaces in between:
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and which was not especially advanced in algek?ra. Thg c'lass [r(;ik ..\ lo;::;
~think " and first after a pause came several cautious opinions. 11 )o>c flth‘
inswered believed that four or five examples wpuld be sufﬁcunt.f v 1;
hecame a lovely prelude to a discussion of what is meant by a prolo .an
of the value of a few examples versus a great nu'm}-aer of examples. .tjhooa
became clear to the pupils that not even a million cx;x@glcs whic ' :;
agree are sufficient as a proof — despite the strong convicuon we might
then have, We even got into a discussion of the value of experiment in
cience versus “experiment” in mathematics.

3.5.2 We “Experiment” Further

There also came up examples of experiences with bottom numbers

case when some of the given numbers were even (or odd). Betore

for the .
er of our theories

we serioushy took on the task of proving one or the oth s
using 5 starting numbers. If we had 5

: »
we were tempted to “experiment
um of the numbers

wsiven numbers would examples also indicate that the s ) :
determines the bottom number’s quality? Several examples at first sceme
ro confirm this, for example 1,5, 8,9, 11 with the row sum 34:

1 5 8 9 11
6 13 17 20
19 30 37
49 67
116

If the bottom number is determined solely by the top row sum,
then the “even™ quality should be maintained if we exchange plac?s in

the top row, c.g. the 1 and the 8:

8 5 1 9 11
13 6 10 20
19 16 30
35 46
81

L o |
But here the bottom number is odd!

THESTEP FROM ARITUHMETICTO ALGEBRA 11}

We have found a counter-example to the theory that the botrtom
- pumber’s even-oddness iy determined by the sum of the five given num-
E bers. Once single examiple is enough to overthrow a theory!

' But what might the rule then be,if there is a simple rule?

There were still hopeful students who sought for some special rule.
b A few came with the logical and promising idea that we could try to
E relate the case with 5 numbers back to the earlier case with four numbers,
- since the first row of additions gives 4 new numbers. But then studying
6.7, 8, or more given numbers with successive “backtracking” down-
E wards would be laborious to carry out and difficult to summarize.

Why not try putting letters in place of the numbers?

] We decided to go back to the case with 4 given numbers and to call
E these a, b, ¢, and d. We formed the sums row by row and obtained the
 following triangle: '

a b c d
a+b b+c c+d
a+2b+c b+2c+d
a+3b+3c+d

We have thus obtained the bottom sum: B =a + 3b + 3c + d.
Does the even-odd quality of the sum s = a+b+c+d determine the
g quality of this expression, B? We compare B and s and find that

B=s+2b+2c
or B-s=2b+c¢) . (1)

Here we see that 2(b + ¢) is always an even number — it is divisible
E by 2. Equality (1) tells us that B and s are simultaneously even or odd, i.c.
 either both are even or both are odd. We have hereby come to a clear and
 proven conclusion for the case with 4 initial numbers:

the bottom sum is even or odd when the sum of the initial
numbers is even or odd, respectively.

1 The class wants now to try out this effective method for the case
¥ when we have 5 numbers to start with. What bottom number will we
Ethen get, and what conclusion will we be able to draw?

; We must now start with 5 letters, each representing a number, any
 letters we like, sav a, b, ¢, d, and ¢. Without great difficulty we come up
_'vyith the bottom sum
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B=a+4b+6c+4d +¢

Now what kind of rule can we get out of this expression? It tum
out to be a difficult question for the majority. At this point many simply
copy, without a closer thought, the comparison between B and s whid|
we did earlier and which led to equality (1). They arrive at the relation

B=5s+3b+5c+3d

but come no fprthcr, since the sum 3b + 5¢ + 3d is even for even numben

and odd for odd b, ¢, d.

But a glance shows us that the rule is hidden within B itself :
B=a+4b+6c+4d + ¢

which says that B =a+ e+ an even number, namely 2(2b + 3¢ + 2d). :

With this it is clear that a + e, i.c. the sum of the outer numbernk
determines the bottom number's quality when we have five numbers ini-|
tially.

The rule is simpler when we have 5 numbers than when we have 4!

The class usually gets so involved that they want to go on: does the]
rule get even simpler when we have 6 numbers to start with? Or do we.
get a rule similar to the case with 4 numbers?

The results are once again surprising! And give further opportunity
for wrestling with questions towards a more general investigation
Several examples of different students’ investigations and partial results
are found in the exercises following.

But one observation shall be noted here, before we leave the bot- §
tom numbers:

2 starting numbers give B=a+b

3" " ! B=a+2b+¢

4 " ! " B=a+3b+3c+d

5 " ! ! B=a+4b+6c+4d + ¢

6 " " " B=a+5b+10c+10d +5¢ +f
ete.

Do we perhaps recognize the numbers which appear in the respec-
Tve rows?

1 !
1 2 !
1 3 3 i
! 4 6 4 !
1 5 10 10 5 !

Iy ¢ in Pascal’s tnan-
Why ves, they are actually the same as the numbers i
AR, » ”

’lC. (:lll < ()l)‘ mn IS S Sll“pl l)y oimng to I asc .ll,S t[l.l“"lL? 1.\( C18C 2 .
=} w a o )’ g g ] ( )
3 I <

.

3.5.3 The Rule of 9’s

D o) s 1 la(le 4 or 2 ()1 W l‘\ 1 Mmany U( us
UI ils Usuall\ learn a x‘UlC imn g y ) } 1 ll 1 ] ) I )
ve 1 : » answer to the (l\]CSt.()Il' \thn 1S a wWhoice nu
. > - l 1 . - llbLl
h’l ¢ hcald. lt 18 thL ) L X ) ‘l y l )
( VISED 9? ] YS: b d]\'lSlblL b\ ) when the
cVv V18t > ) hc rUle says: a nun]bc 1S A )
Cnlv dl lblt lC b / : ; ) . X i”
sum (’)f tllc digits‘is 1 i l l y - l' 1 . ( l h L;}, t/
Sur d V1S l) € l) ) llld ontly then I 1¢ COrrespond 1134

rule applies for 3).

I : tvisible by 92
-ouple of examples: s 2169 divisi le by ‘
feonpe ’ Sum of the digits: 2+ 1 + 6 + 9 =18,
divisible by 9.
the number 2169 is therefore divisible by 9.

if we take 31,4782 N o
gnd ! \xneth; i 1 + 4+ 7+ 8=23, not divisible by 9, so neither 1s
igit sum:

the number. 1 -
ve such a rule?
o C?n Wle’pr'o lves to 3-digit numbers. We suppose that the
Let us first himit ourseiv g ose that he
wvould the number be
1gits 1 are a, b, and ¢. How 4
3 dieits in the number , jmber be wrt
ten ’Oabc’ No, since abc in algebra means a - b-c-wedon’t te out the
. a inly mean 5 - .
multiplication sign between letters. 538 certainly does not

but rather 5 hundred thirty (three ten) eight, i.e.

500 + 30 + 8 or more clearly 5- 100 + 3 - 10 + 8

; 3
How shall we then write our number?

a-100+b-10+¢
= 100a + 10b + ¢

Correct:
or more nicely

=
t
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And the sum of the digits? Correct answer: s=a + b - ¢
How can we compare n with s?
We can perhaps write them underneath each other: n = 130a + 10b + ¢

s=  a+ b+c
and see that the difference between themis n-s = 99a+ %b
’ or n-s=9(1la+b), (2)
a number which is always divisible by 9.
We “solve” for n and get from (2)
n=s+9(1la+b) (3)

What does equality (3) tell us?
It says: if s is divisible by 9, then n will also be divisible by 9. Butis
n divisible by 9 only when s is divisible by 9?
Formulated differently: when n is divisible by 9, must s also be so?
We return to (3) and solve for s, getting
s=n-9(lla+b) 4

Equality (4) tells us that s is divisible whenever n is — and only
then. With this we have completely proven the rule for 3-digit numbers.
Since the argument may be carried through analogously with an arbitrary
number of digits we understand that any number is divisible by 9 when-
ever its digit sum is divisible by 9.

3.5.4 The Example as Teacher

One day on the Uppsala-Stockholm commuter train I was witness
to a dispute between two young men, university students — let us call
them A and B — who had differing opinions as to the speed of the train.
“Why don’t you just calculate the velocity; you’ve got a calculator?” said
A. “The distance is 66 km, and the travel time is 40 minutes.” “You'll see
I’'m right,” said B and rook out his calculator. He began to punch kevs.
But no result seemed o be forthcoming. We passed Marsta, then
Upplands Vasby and came into the Solna wnnel near Stockholm. I began
to guess that B had searched his memory in vain looking for a formula
contarnmy distance, ume, and velocity (s, t, and v) and that now he was
simply experimenting with his calculator.

THE STEP FROM ARITHM ETICTO ALGEBRA 1117

In such a situation onc may come to one’s own aid with the help of
asimple example, where the three qualities can be seen in rcl;tion to each
other.

Fot example: how far does a train travel in 3 hours if it goes 80 km/
hour? The train obviously covers a distance of 80 -3 =240 km,

From this simple example we see directly the relation

distance = velocity times time

(assuming that velocity is constant, of coursc).

In a short version: s=v-t or s=vi (1)

We need not store this formula in memory. We can have faith in
our imagination to find a concrete example and in our thinking ability to
extract the formula from the example, once again. _

By the very act of writing formula (1) we take the step from
aumeric cxample to algebra, limited however, in the sense that we use let-
ccrs as abbreviations for quantities which occur in the formula. What do
we do when velocity is unknown as in the dialogue above?

One might then take the example that a train covers 90 km in 2
hours. How fast did it go?

Naturally 90/2 = 45 km / hour (most likely a freight train).

It matters not at all if the results of our home-made examples are a
litdde far-ferched. The main thing is that we set our thinking in motion
through the choice of concrete, numerical values.

This time we find that

distance or v=§ (2)
ume t
If one brings to mind that speeds for trains and cars are usual.l}'
given in km / hour, one sees that it must be a question of dividing a dis-
wnce by a time. Those who are used to working with letters need not
formulate more than the first example: from (1) we can easily derive for-
mula (2). If in fact we divide both sides of (1) by t we will get

s vt

and after reducing

S =v.
t t t
If we instead divide (1) by v on both sides, we get a third relation,

S =t
v

Formulas (2) and (3) are just reformulations of the basic relation in (1).

&
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There are many examples of relations of this kind. A few are:

Area ot a rectangle = length x width A=l w

. Mass = density x volume m=d-V
Voltage = resistance x current E = RI (Ohm’s law)
Cylinder volume = base area x height V=B h

An ex > v ‘
f l ngamplc can be of value not only when we are looking for 1§
ormula. Tt ¢, J¢ ive us i | ‘
can sometimes also give us the solution to a problem whichi

broader than the original task.

Let us look at the i i imag| i
at the following problem, which we imagine using ina g

sixth or seventh grade class:

What ki \
erer at kind of sums do we get when we add three consecutive inte-
gers? For example, 23 + 24 + 25, 6 + 7 + 8, etc. We ask each pupil to give |

a N d i i

t}i least f)lne em‘mplc, and take the time to write down all the totals which
the pupils obrtain. It may happen now and then that an incorrect sum get
in, but this only makes the exercise more interesting. The li migl bD i
e e g. The list might begin

45,95, 12, 156, 51, 15, 78, 222, ...

Do these numbers have anything in common?

Ihe Ll.‘bS SO g . B B
on dlSC()VClS t]l 1t [ll(f un b l)y .S l“tl ire ‘
sums are d]\ ISIble $

enti P S o
: tirely cpmmced that they always can be divided by 3. Might there not
e exceptions? How could we prove the divisibility?
At this point it i :
u e -~ "¢ CX i
oughls Somep " s ksxnll_\ a great help to examine one example thor-
ot y. one has ta cr; 13 + 14 + 15 and obrained 42. Might we from
e very arrangement itself, 13 .
3 g , 13 + 14 + 15, be able to pred
the very a : ict that the t
1s divisible by 3? ’ o
The clas i inki ‘ it wi
e s begms thinking. We wait with our answers so that every-
as time to think. Soon several students quietly come up and show
on 1es j
o paf:::rl.an idea that they have. For example, 15 lies just as much above
Thes tes under. The sum is therefore 3 - 14, that is, it is divisible by 3.
m ' 1 ‘
The oment we sec the correctness of that idea we understand that it
applies g.enemll_v: the same argument can be applied to any sum of 3 con-
_secutive integers. The sum must therefore always be divisible by 3.

.+ We see here inki i
, here that thinking about a particular example can be so

fruitful and enlighteni i

_ tf.;l 3nd enlightening that we arrive at a yeneral result.

» t e P SRS I C o : '

A\/ o is no great task afterwards to clothe the reasoning in algebraic
dress: letting the middle number be N, the sum is
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N-i+ N+ N+1=3N
The class might now be given the task of investigating if similar

results can be obtained for sums of four, Tive, or six integers.

3.5.5 Muagic Hexagons

In the lower grades the pupils have cagerly added rows,
columns, and diagonals in “magic squares” and perhaps themselves con-
structed a simple magic square, for example a square with 9 boxes con-
taining the numbers | through 9, in which the rows and the columns and

even the diagonals all add up to the same sum.

S { 6
3 5 7
4 9 2

Albrecht Diirer constructed a square with 4 x 4 boxes, containing

the numbers 1 through 16, which, by the way, was donc in such a way
that two adjacent boxes in the bottom row gave the year of construction,

1514.
16 3 213
5 10 11 8
9 6 7 12
415 14 1

There are many books available which can acquaint us with magic

¢ size. Can one construct a square with only 2 x 2

s? That the numbers 1, 2, 3, and 4
b

over. But can we succeed

squares of even large
boxes containing four whole number
are not a solution requires no great effort to dise
with four other integers? We return to this problem in Exercise 3.

An American office worker, Clifford W. Adams, sed-Tiimself the
problem of constructing magic hexagons (6-sidedﬁ{fgyrcs').'"\X/ci..call~a sin-
gle hexagon a hexagon of the first order, a grpmplof 7 hexagons as in

Figure 3.5.1 is called :

BEYhe secondiorder;anda group of 19
AN o

N
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hexagons as in Figure 3.5.2 a third order hexagon. s it possible in Figure
3.5.1 1o put the first seven numbers 1, 2,3, ... 7, and in Figure 3.5.2 to
put the 19 numbers 1 1o 19, so that one and the same sum is obtained
when one adds the numbers in the boxes horizontally, and along cach of
the two directions for diagonals? (Figure 3.5.3)

Fignre 3.5.0 :
Hevagon of the second order
If we let a,b, and ¢ be three num-

bers placed in adjacent boxes in a Figure 3.5.2
sccond order hexagon, as in Figure Hexagon of the third order
3.5.4, then we are to have the row
sum a + b be equal to the diagonal
sum b + ¢. Is this possible? What

conclusion can we draw from the \f \/‘
N~
7
~
/N

equahity
a+b=b+e? . \/W%
N\

The equality applies only if a = /\A/\

¢, which means that two boxes con-
tain the same number. Since no num-
ber may appear more than once, we
sce that a magic hexagon of the scc-
ond order does not exist. But per- Figure 3.5.5
haps one exists of third order, with
19 boxes?

Adams began his investigations, according to
an article in Scientific American (No. 8, 1963), the
year 1910. He proceeded by trving to place the num-

bers 1,2, 3, ... 19 in the boxes in different ways. For
2 long time he did net succeed, but in 1937, after 47
vears, the retired Adams found asoluden. Tt must ‘

have been a shock for him when some tme later he
discovered that he had misplaced the paper with the Figure 3.5.9
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had constructed and that he would not remember the
placement of the numbers. Should he begin again trying out different com-
binations, or should he wry to find the paper? He looked long and in vain
for the paper;, but finally found it five vears later! The solution then came
to Martin Gardner’s attention. (Gardner was the editor of the mathematics
corner in Scientific American.) He turned to W. Trigg with a request for a
general mathematical investigation concerning the existence of magic
hexagons of arbitrary order. Trigg proved in 1963 that no magic hexagon
of higher order than 3 exists. Perhaps it was good intuition which saved
Adams from the Sisvphean task of looking for a magic hexagon of order 4.

magic hexagon he

3.5.6 Mathematical Induction

When Galileo studied how far a ball rolls down an
or how far a marble falls in the air
he formulated irj

Example I:
inclined planc during a specified ume,

during a given time, he came to the conclusion which

the following way: :
The distances which the ball rolls or falls during successive, equally

long time intervals are proportional to each other as the odd integers:

1:3:5:7 ...

If a ball rolls 1 “bit” during the first second, then
it will roll 3 “bits” during the second second, and
5 “bits” during the third second, and

7 “bits” during the fourth sccond

ete. (Fig. 3.5.5)

Figure 3.5.5. Galileo’s rol/iné b.xll‘k

[f we now add up the distances from the starting point, we find that

the total distance traveled is



+

.‘;{
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1 “bit” in 1 second
I+3= 4“bits” in 2 seconds
I +3+5=9%bits” in 3 seconds
1+3+5+7=16“bits” in 4 seconds -
etc.

JANCC & § [lin SN ,‘
I]le “u”lbl)(_'ls \\]ll( ll (l(’l(‘lllll]le l]lC l()la] (hQ( ince are Illl]ﬂ 1 4 9 “)
ceee Ihesc numobders arce )(?”‘176’) )‘ y Ly Dy Ty -y LC, CT
C l 2 } 4 etc 1.e ()' l}l('llll]lll)'l\ \\}I(l

specify the time >s thi i
pecity the umes. Docs this pattern continue? And if so, out to infinity? §

If_ we leave mechanics and fo
our problem is to find out:
Does the sum of the series E
1+3+5+ ...+ alast odd number
make a perfect square?

P+ 3 gives 2571 i
gives 25,1 + 3 + 5 gives 3%, ¢ 1 1
) . » g , etc. It appears as if the 3
square of the number of terms. i sum s the
For example, we would expect

I +3+5 < ] = 6° i
5+7+9+ =6 (sincethereare 6 terms)
o el tpe : l
We check it: the sum is actually 36.

How can we prove our supposition?

ololo y The Greeks found a beautiful geometric proof:
elololols Figure 3.5..6 shows a square which ?s made up of 1
s1olsls number of L-shaped right angles (“gnomons"'§ Th‘;
r TS o number of points in the right\ angles co.rrcsp~on.ds t;
ST s the successive odd numbers. Their sum is the number’

Figure 3.5.6

o't points in the whole square. The figure shows
dircctly that' 1 +3+5+7+9=5: ‘ \
What happens now it we add 11 more? A

° new, lnrg.cr right angle piece gets added on, and

E we see with the help of Figure 3.5.7 that this piece

o t()g.cthcr with the old squ.ﬁc makes a new ;‘qzmre

o \?v'hxch corresponds to the sum 6% If we now con-

> tnue to add on larger and larger angle picces, do
P gy we always get the next largest square?

} l] he new right angle has two points more
than the previous. These tvo extra points are just

what are needed so that the larger right angle can F_ . te
go round the corner of the provious square (Frgure 1.
3.5.8). _ B o

‘That brings us to the insight that a square o
plus a right angle makes the next larger square, -1 1: -
step by step. T e

rmulate the question purely mathcmntic‘\l!\ai ;
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We can now draw the conclusion that the
sum of the old integers always gives a perfect
square, taking as many integers as we like.

Ifigur(' 3.5.8

In summary we may say:
(1) 1+ 3 gives the square of the number 2.

(2) Adding on the next following odd number gives the next larger
perfect squarc.

(3) This can be repeated endlessly.

(4) The sum of the successive odd integers always gives the square
of the number of terms.

Concentrating the proof to one step which can be repeated an
unlimited number of times, starting from a proven beginning point, is the
kernel of the elegant means of proof called mathematical induction.

This method of proof was popularized by Blaisce Pascal, who even
in his early ycars gave evidence of exceptional mathematical talent (see
also 3.2.3). The point in the induction method of proof is that one need
not look for a direct proof. In our example we avoid the task of directly

summing 1 +3+5+7 +...
If we wish to carry out inductive proof purely arithmetically for

our odd number series, we can begin by supposing that the sum of n

terms
1+345+...+(2n-1) 1sn’ (1)

We know that this is correct forn = 1. (2)

If we add now the next following odd number, 2n + 1, to series (1),
the sum will be, according to our supposition

n+2n+ L.

Is this a square? Yes, sincen’+ 2n+ 1 =(n+ 1)




RYIITHEMES FROM THE CLASSROONM

If (1) is true, then it is also true that
1+3+5+ .. +Qn+D=(n+1) (3)

The step of adding the next higher odd integer thus gives once again
a sum which is the square of the number of terms. We can now go back
to the beginning (2) and carry out the step from (1) to (3) as many times
as we like. The induction is complete.

Lxample 2: Finding a formula for the sums of squares is much
more difficult:

F+22+3+..., =2

The first four sums are

I* =1

F+2 =5
a2 3 =14
P+ 22+ 3+ 4 =30

Compare with the figurated

& AR R R numbers in Figure 3.1.4.
il A It 1s interesting that the
+ 4| - S e Babylonians succeeded in finding a
+ + 5 e [ formula for the sums of squares and
+ + I X XXX also gave a geomerrical proof by
+ + R +? induction for the formula. The
L + +}X i + —1 + o method is in principle the same as the
J) x 1 b ++ + + 4 Greeks’ gnomon method, but the
X[—<|+ + + o—o—o0—d level of difficulty is considerably

Figrre 3.5.9 highcr.

Figure 3.5.9 shows how the
Babylonians set out the dots (points) of the first four squares in a dot
rectangle and by this means came o the formula:

F+2+3+, . +n'= 'i’(l +2:-1)(l+2+j5+.7_»+11) )

The figure shows that

(%)
@

17 e 2 304 4 = (132231 +2+3+4)=
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3.5.7 Frem Number Riddle to Algebra

Lask the pupils in a seventh grade class to think of a number, dou-
| bleit, add 2+4 and then divide by 2. From the resulting number they sub-
¢ tract the original number. I then impress them by saying that I can “sec”
¢ the final resulr ... It was 12, wasn’t it? Did anyone get anything else? Oh
t well then, whose thinking has gone wrong, yours or mine? We repeat the
 exercise in similar variations. Must the answer in the game above always
E be 122 Let us try a liule algebra: We let the original number be a. It is, of
| course, different for different people and so we cannot do more than give
¥ italetier a, which could represent any number at all.

' And now we wrire, step by step:

double the number: we get 2a
add 24: ' we get  2a+ 24
divide by 2: we get 2a*24
Subtract the original number: the result is ?:
2a +24 .
2

Can this expression be simplified? Yes!

;?L'é'ﬂ_ is quite simply a + 12,
From this it follows a + 12 - a=12
fand the reading of minds is revealed for what it is!
: In this manner one can exercise a class in algebraic simplification in
fan enjovable way.
The step up to equations is now not especially large:
‘ [am thinking of a number. I increase it by 8 and divide by5.1get7
my result. What number was I thinking of?
ev One can solve this problem in the head, or preferably with pen
fand paper, and notice how the solution came about. It is both interesting
#nd important that we now and then observe how we think.
It usually turns out that not all students (of those who actually
golved the problem) can clearly account for how they solved the prob-
gem. But some students succeed in observing their thought process. They
B2y, “First [ took 7 times 5,” since division gave 7. 35 must then have
feen the number before I divided by 5. Then I took away 8 and got 27,
ghich is my answer.



+ the problem: , b

, are an effecuv ’ t i i
{ effective tool. How do we go about setting up an equation? J
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) H H M ‘j V
As we see, the solution goes backwards relative to the statement oS
4

Think of a number
increase by §

divide by- 5

resule 7

What was the number?

The number was 27

before this it was 35 -8 =27
5

before thisitwas 5 - 7 =35

the result was 7

Problem | ‘,‘ Solution
|
!

.‘_4._,_‘. —

What was the number?

. Let us now look at another problem taken from everyday mathe-
matics:
: p . R ; ) . . . - . A
) By xd.hr?g, saltto 5 kg of 4 percent salt solution, we wish to increase §
the concentration to 5 percent by weight. How much salt need be added?
. In this problem we do not know in advance how much the salt wil |
“\.'Clgh, and therefore we cannot do a kind of “backward calculation” to
find out t‘he desired amount of salt. The problem is not so amenable to |
working in the head. For problems of this and similar tvpes, equations §

‘s . .
[ We 'uhtum to the riddle above and let x denote the unknown num-
o] Jalc e ¥ i
er we wish to «.alcu.lmc. Now we “translate” the problem wording step
by step to an algebraic expression:

think of a number: we call it X
increase by 8: we write X+ 38
divide by 5: we write x+8

i i :

the result is 7: we can write x+S_7

”|

r the result:

o]

We have thus come to rwo different expressions f

5
We connect the two sides with an equality sign-and have then an.

cquation. Now the problem is to solve the equation

Xt8 =7

A w ; )
N (O * > N
, i ¢ are to get 1 to [hC point x-=some numbcr.

THESTEP FROMARITHMETICTO A LGEBRA 127

[n other words, we want to try 1o “get x by itselt.”
What does the equation tell us? x + & divided by 5 gives 7. We can
multiply both sides by 5 and in that way maintain cqualiny:

“

o .
we gCl 5 - A b =5 - 7

+
5
that 1s, x + 8 =35,

This equation applies just as truly as the equation

x+8-8=35-8

which is obtained by subtracting 8 from botk sides.
We obtain the solution hereby: x=27.

If we compare solving the equation with our selving of the riddie
carlier, we find that we have taken the same steps. The advantage with the
cquation is that one can (with practice) write the equation down in the
same order as the problem’s wording and then “technically” go about
solving for the desired value. We avoid the necessity of “thinking back-
wards.”

From a pedagogical standpoint it is often better to activate students
with more “figure-it-out-in-your-head” solution methods than to have
them carry through mechanical solutions. But with a problem suct: as the
salt problem the practical advantages of using an cquation are consider-
able:

We let x kg be the amount of salt which the equation asks for.

Now we “translate” according to the text:

We have to begin with: 5 kg 4-pereent solution
We add x kg salt:
This solution has 5% salt 3 % of (5 + x) 15 0.05 (5 + x) kg salt
by weight (5)

The solution then weighs (5 + x) kg

Do we have any value to set equal 10 0.05 (5 + x)?

This expression represents the amount of salt. Can this be written
in another wav? Yes. We look back to the original quantity of solution
and note that it contained 4% salt, 1.¢. 0.04 - 5 kg or 0.2 kg salr.

We add x kg sale:
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the amount of salt becomes (x +C.2) kg (6)

Both (5) and (6) give the amount of salt, so the equation is:
X +0.2=0C53(3+x)

Step by step in proper order we now get the following equivalent

cquations:
x+0.2= 0.25+0.05x
-0.2  -3.20
X = 2.05 + 0.05x (note that x means 1.00x)
-0.05x = - 0.05x
0.95x = C.05

Finally we “get x all by itself” by dividing both sides by 0.95.

0.95x —~ 0.05
095 0.95
x=-L <0053

19

The answer is therefore: 0.053 kg or 53 g of salt needs to be added.

I have consciously chosen to present a problem leading to a rela-
tively difficult equation. In the sixth or seventh grades in school one
must begin with easier equation problems. The risk is then, however, that
the problem is so easy to solve in the head that the students protest what
they feel is making an easy thing difficult by doing it with equations. The
thing here is to find a good middle-of-the-road problem. It is desirable
for the class at an early stage to gain an appreciation that equatdns arc a

working tool in the solution of problems.

3.5.8 Exercises

1. A cylindrical pipe has a wall thickness of 1, inner diameter d and

outer diamcter D. State some relations between these three quantiues.

2. We look back 1o the end of Secrion 3,320 s the last triangle
obiained there identical with Pascals triangle?
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3 ® { >
. KN (,;m l.1oux numbers a, b, ¢, and d form a magic square of 2 x 2
ONCS, Such that [hC rows COIU i 1 . abers
] 5, m q 5 : .
e pch thae ‘ ns, and diagonals (with two numbers
ac dbgve the same sum?

4, \\ ]lﬂ[ gUICIa] XCbUl[S can one come u[) n l! one continues [IIC
O 6]

3 . . 5

S(Ud\ n SLQ_[]O“ .}.5.4.

3 Show S,

f 6 Show that every prime number greater than 3 can be written in the
¢ form - ere n i i

__ n+1lor6n-1, where nisa natural number (1.e. a positive integer).

: 6. Show with the help of Exercise 5, that if p is a prime number
greater than 3, then

pP+2

feannot possibly be a prime number.

7. Try to prove by induction the beautiful formula
‘1-‘+2‘+3‘+...+n-'=(1 +2+3+...+n)
n=1,2,3...

(Refer to Section 3.5.6)

.. -
§. We have I kg brass, containing 60 % copper.

~ How much more copper must we melt down and add if we wish
fo bring the copper content up to 70%?

3.6 Judgment and Misjudgment

3.6.1 Big Balls and Little Balls

Time after time evervday life asks us to make judgments. It can
preecn th'c. most widely differing things, from simple comparisons of
Ength to difficult evaluations of quality.

e

-
vx
-l
-

4
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We are very familiar with comparison of lengths and distance. Itis ¢
not hard to judge . in Figure 3.6.1, how many times longer line AB is

than line CD.

e 4 - @
;‘ N ments of distance “in depth,” for exam-
ple, across a bay or in the mountains. As
c D far as time intervals are concerned, we
5 all know how difficult it is to free our-
Figure 3.6.1 : s
‘ : - selves from the subjectivity of our own

. experience. With two- and three-dimen- ;
sional things we usually also have difficulty making rcliable comparisons.

E) .
I don’t know how many times | have begun a geometry lesson in
the eighth grade with the following little story:

For a birthday party the hostess had made marzipan balls, solid, in 38
two sizes. Some of the balls were twice as large in diameter as the others. |
The hostess offered them to her guests. The first guests each took a small
ball; then someone took two small balls. The next guest thought, “I can :
just as well take a large ball instead of two small; there isn’t much differ-
ence.” After that another guest reasoned, “I'll take three small balls; I'm |

sure it isn’t more than one large.”

“What do you say, kids? How many small balls could one politely :
take, if one didn’t wish to take more than the one who took a large ball? |

Can you estimate? You may very well — if you wish — use decimal frac-

tions. Does a large ball contain just as much marzipan as 3 small, or 5 or

2.9 — or how many?”
Most students have guessed that 1 large equals 4 small. A few

answered 3; a very few have answered with a decimal or with 5. Only scl- I8

dom has someone answered 8, and then he was met with surprise and
disparaging glances from his classmates.

Even in those classes which have been generous in their estimates, |

or where someone has answered 8, it has been advantageous not imme-

diately to say if the answer is correct or incorrect. It is more fruitful to |
let the class itself judge the reasonableness and correctness of the {8

answers. :

1 have therefore spun out the tale and told how the hostess also
served jellied candics in the shape of solid cubes, some of them with dou-
ble the edge width of the others. How many small cubes together would
nake as much candy as one large cube?

Much more difficult are judg-i‘ '
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The answer “four™ usually persists, but 1t

comes a little doubtfuliv. And it doesn’t take =
long before some students cagerly and with con-
viction in their voices say: “S cubes.” They are
happy to go up to the blackboard. There they
quickly sketch a cube, which, like a Christmas
S

package, is divided into quarters on cach side - s
. - . . Gonre 3.6.2
(Figure 3.6.2). There 1s no doubt about it: the 8

large cube corresponds to 8 small cubes.
w suspects that the same holds true for the marzipan

Everyone no
on” by

balls. According to the famous and classical “method of exhausu
the Greek Eudoxus (408-355B.C.), onc can sce that doubling the ball
diameter gives an 8-fold enlargement in volume: one inscribes an endless
series of smaller and smaller cubes within the ball, so that the total vol-

ume of all the cubes begins to approach the volume of the sphere as a

Timit.
In what context does a doubling of a length dimension result 1n a

quadrupling? The class thinks this over, and there may come widely dif-

fering answers, which yet are basically correct. For example: if one dou-

bles the radius of a cake but keeps the height unchanged then the cake
e o ’

will be “4 times as big.” Or: if one makes the side of a square twice as

long, then the area will be four times as big.
In the continuation of our work, we eventually gain important

knowledge about scaling. We setup a table: -

When the length is ... then the avea is . and the volume
doubled 4 times as big 8 times as big
tripled 9 times as large 27 times as big

4 times as long 16 times as large 64 umes as large
10 times as long 100 times as large 1000 times as big
half as long v %

one-third % Vs

one-fourth . N Ya

4 %3: %:—3:

/12

The numbers in the area column are the squares of the length num-
o5 the numbers in the volume column are the cubes of the length fac-
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In summary: Arca scale is the square of the length scaling.
Volume scale is the cube of the length scaling.
The most important application is without doubt converting

between different units of measure for area and volume.
We have come up with an important rule, but we must time and

again practice with what appear to be different examples:
1. 1 sketch a cylindrical glass on the board: “Here
is water up to this height. Now we fill water to double
the height. How much water do we have in the glass

y now?” No onc is fooled.

S
' 2. “Here is a conical glass (Fig. 3.6.3). It is filled up
to half the height. If we now fill it up to the brim, how
many times more water have we?” A
A pupil remarks: “One can see that you have expe-
Figure 3.6.3 ricnce with this stuff!” After that encouragement the

hands start going up. The first answer: four times as
much. The second, third and fourth answers: four times as much. Are we
all agreed on this? Doubt, until someone comes up with the right answer:
8 times as much. This time the pupils are surprised not so much over the
answer as over the fact that they let themselves be fooled.

Repetition is the midwife to understanding, but it ought to be
interesting and not just routine.

During a repetition one can readily tack on something new. Figure

3.6.4 is taken from Huff. It shows two sacks of money. The one has dou-
ble the dimensions of the

other. We suppose that the
figure is meant to tllustrate
the doubling of profits in a
business and thereby show
how “successful” the com-
pany is. We might ask the
class if they have any com-
ments on the figure. Does
it well itHustrate the com-

pany’s doubling of profirs?

Figire 3.6.4 (From Huff, “How to Lie witl: Statistics. ™)

The class need not think long before they see through the trick which hies

behind the figure. What 1s 1?2
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If the sack stands before us, how much more would vou think the
big onc holds than the small one? When we sce the sacks drawn three-
dimensionally as in the figure, most people get an unconscious fecling that
the big sack holds much more than twice the contents of the little one.
Herein lies the trick. The volume ratio is, in reality, as we have scen, 8 to
1. More correct would be, for example, to illustrate the doubling of
profits with a bar diagram (Fig. 3.6.5). .
The three-dimensional drawing occurs quite T
often but sometimes the illustrator does not seem
w0 have thought of the trick which it contains.

‘ A problem concerning area and volume scal-
ing. which occupied Galileo and can generate
good interest in a ninth grade class, is taken up in
Exercise 6.

Figure 3.6.5

3.6.2 Beware of Averages

Among types of judgment and comparisons we make not least are
paverages. Oil consumption, food costs, speeds, etc. are all generally stated
a5 averages. Suppose we are travelling by car, have covered a distance of
600 km. and been driving 8 hours including breaks. For fun we want to
know what our average speed has been, including the breaks. This might
even be of value with thought of planning for future trips by car. We find
that our average sped was 600 km/8 hours, i.e. 75 km/hr.

in distance at a speed of 800 km/hr. and immediately returns with a
speed of 1000 km/hr. What average velocity has the plane kept? It is
tempting to answer 900 km/hr. This is incorrect, however. If the distance
- were 10,000 km, for example, then the flying time would be

10.000 , 10,000 _ 195, 10 = 22.5 hours.
800 1,000

An airplane flying at 900 km/hr. the whole time would need the

time
3?9&99 hours, i.e.  22.222 ... hours to make the trip,
o}e]

Let us now consider the following problem: an airplane flies a cer- .



discount?
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which gives too short a flight time. The correct average speed must therf
fore be less than 900 km/hr. We see here how easy it is to get lost whej
calculating averages. ‘

The airplane in our example returns at greater speed than during
nd flight. The return thus gocs more quickly, which mean
that the plane is travelling with speed 100C km/hr for a shorter time thagé
with speed 800 km/hr. If the plane had flown at these two speeds during
equally long times, then the average speed would have been 900 km/b]
i.e. the average of 800 km/hr, since the distance covered in a given time i
proportional to the speed. i

3.6.3 Per Cent Calculations

Imagine how difficult it would be to get anything out of data an
statistics, if we could not state the results as per cent!

Let us suppose that a person P owns three sevenths of the stocksin
a company X and five elevenths in another company Y. In which com

- pany does P have the greater share?

It is not easy to compare directly ¥ and %, We often use per cent
values and find that % corresponds to 42.9% and ¥, 1o 45.5%. With tha
the comparison is completely clear, ~

In the old Swedish grade school the pupils were drilled in calcula
ing how many per cent higher or lower a certain price was, compared 1o
another. We need not long for a return to the old school methods, bu.
considering how often percentage calculation is used in daily life, not the |
least in commercial advertising, it must be a part of general education to |

know a bit about such calculation.
If a firm wishes to sell our a lot of goods for half price, it may quite |
simply advertise: “These goods now selling at half price.” Or: “50% dis-
count on these goods.”
But a more common way of advertising nowadays is:
“Get double value for your money.” Or: “Ger 100% more goods
for your money.” -k
All these expressions say the same thing, but doesn’t it sound more §
tempting to the customer 1o get 100% miore for his money than a 50%

b

.
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of everyday mathematics
Per cent caleulation is perhaps that area of everyday mathes k{
hich offers us the most varied collcction of problems, and on wp o
WAICTH orters us k R : : 1 N Y
he f more aware
that, problems with the fresh taste of real life. Pupils bcconlu \ v
wh ‘o 1 : sults take on dif-
of \\tlnt it 1s one compares with, and they see how the results ¢ l
; ‘ A o 1 n what onc
ferent expressions and have different values depending upo
ere 3 :
uses as a reference. ‘ N o .
salculations also give problems which invite estimatior
Per cent calculations : give . e estimation
ith head calculation. Let us examine the declaration o 50
Wi It R . | ) :
1 : g cat content is
Falukorv (a favorite Swedish sausage): 1t states (tihai thc{ me N
‘ 1 T ratingredients are then declared separately
68 % (by weight). The meatingredients are ;

beef 45%
pork 35%
and lard 20%

« B < dli mn
l W llLll e i }l YW mu res )CL“VCI /, are contalrncec
{0 L ( ang OW (.l l lld, & P }, C 1t l

IJIUI\OIV.
Sln(.(. th‘. meat content s ()&: O, 1L ItplCS(fn[S dbOUt / Uf [1/1(
134 . l 1 n o e )f 450() D1 (ll)()ut .SO/),
WL ht hC ractio (t LL t W L)U]d thC“ I.)C / C / C /\
W { action f ld[d )Uld l)c 3 t ...:O or a Io: Illl‘ltcl 14 )
h]]( l ¢ It O [e] W / [&] o PP X ) (/
v a j y i . e . . ‘) I] ff’ 1( -y ! > eth
A . - S w to e o
cat TOC (&, kllnp ¢S in bOO S [tKe L u (4]
C)n(. Rt tln 5 DOC X
R I) It Ost all\e \Vth a1ne
; st YUur Llhl S tramnimng in pCI cent bLLO“lLS m
Laalts s, L P It b
plL k5 out llltClLStUlg A“tlLlLS tl()”l [llC d«“l} new .\I)a[)cl. I IC[)]()(II](.C }(' [

ippi ¢ wh > such examples can have.
afew clippings to show what breadth su p

I. “Enormous mark-up! What does a farmer get fo.rfa kllogfmmdi‘f
carrots at the wholesaler — and what does th}* housewife ]p?y n(()irthﬁ
same carrots at the grocer’s or market square? I:xprcssdealtro’ OUC"I.O‘N
there is an enormous mark-up on certain vegetables and flowers. C: 5

go up by 350% from wholesaler to rcmflcir ;jmd}bn;;:j Cl;}cqrsm[:\zg(:iz;i
during the same journcv.” (From an article in the edis
Expressen.)

2. “1900-1977: Divorce up by 800%. Di\'orcc§ in S\vc.dfn h:tv.c
increased markedly, looked at from a historical perspective. Tbe mncrease (115
§00-900% since the beginning of the 20th centuny. Of all ma‘rrmgc(sj entered,
25-30% are dissolved as a result of divorce.” (Dagens Nyheter, Sweden)

3. Ina 19?3 article the ownership of the Swedish domestic airline

Linjeflyg was described as complicated (Figure 3.6.6):
. yg was
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Owmers of the Domestic Airline

DK = the Danish government

N = Norwegian government

S = Swedish government

O = Miscellaneous interests in DK, N, and S.

S INT LT = Swedish Intercontinental Air Traffic
S STORF = Swedish big industry

DANSKT LS = the Danish Airline Co.
NORSKT LS = the Norwegian Airline Co.
AEROTR = Swedish Aero-transport Inc.

“Linjefyg’s own-
ership is complicated.
Danish and Norwegian
interests, through SAS,
have influence over the
Swedish domestic air-
line, just as Swedish

l S STORFE l

SINTLT

interests have in neigh-

S

AS boring countries.”
KONSORTIUM

@ 4.*New taxanon
Shocks™ — newspaper
[LINJEFLYG AB | | headline

release of new prop-
erty valuations in 1970.

following

Figiure 3.6.6

“Nimdé community reports an increase of over 500% in taxation
value for an area containing summer cottages. At last taxation the lots
were valued at $1000. Now they are raised to $5000.”

(Is the per cent figure correct?)

The numbers in these examples are a few years old, but we can find
examples daily — equally varied and original — and use them in our
work at school.

Opportunitics for co-operation with colleagues in the natural sa-
ences and particularly social studies abound. Inflation, wage increases,
real increase in carnings, city planning, large scale producton. cte. all
give rich materials without further ado. materials which motivate the
pupils in the higher levels in their studies.
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3.6.4 Exercises

1. Refer to Example 3 above on Linjeflyg. What per cent of

L Linjeflyg is owned by Danes?

2. Refer to Example 4 above. Is the figure 500% correct?

3. The Boliden Company’s Aitik mine is one of the “poorest” cop-
 per mines in the world: the ore is only 0.5% copper. How many tons of
- ore must be mined to get one ton of copper?

- 4. The price of a product 1s raised 25%. How big a discount can
E the store now give without the price going below the original level?

5. A community one year reduces its financial contribution to a
school by 50%. The next year it raises it by 100%. (No other changes in
' he school monies are made). At what level, compared with the original
| vear, is the school contribution now?

6. Galileo writes in his essays on “things which float on water”:

... If one wishes to maintain the same proportions in the
bones of the sheleton of a great giant, as we find in the ordinary
human, then one must either use a stronger and harder material for
the legs or accept a reduction in strength compared to common man,
since if our height were to increase normally we would fall and be
crushed by our own weight. Therefore, if a body’s size is decreased,
the strength of the body is not diminished in the same proportion;
the smaller the body, the greater the relative strength. A small dog
ought to be capable of bearing two or three dogs of the same size
upon its back: but I believe that a horse could carry not even one of

its own size.

Let us now suppose that adult mammal is 8 times heavier than a
* voung animal of the same kind. How many times larger must the bones
that bear weight in the adult then be, if we assume that the mechanical

bonés?

¥

sirength in both cases is in proportion to the cross-section of the |
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7. A boat went 20 knots for 10 minutes and

. ‘ kno then 15 knots for i
4\_“\ 1nutes. What is the boat’s average speed durin s

& this 40 minute-period

0 8.‘ Cnlcu'late the average speed for the
tes a given distance at 800 km/hr.. then tur
ately home at a speed of 1000 km/hr.

airplane of Section 3.6.2. |t
ns around and flies immcdi
?‘X

S (7
a «l ng a..‘( Ot orm

3.7.1 Polyhedra

N & Vow dtl 1 nature. I.() CIV
IIICIC 1S a IICIl ]I[CI 1ture on tllc man on

S O
CO]OX P}lot()gl APIIS SJIOW us C,\anlples ()1 hOW n ‘

ICI“S i“ i rm an ow as given ]lllll(f]al§ ants ‘l“(l anin alS C()I()l —_
* te] 0 P ‘ ;

ature has solved her prob'-Ié

- i

not only beauti : i i
y beautiful but also functionally * ]

g

!

some of these books or seen films, b hcor“’c‘-“ b erhaps. e
: s, but how manv o 1 av 2
ourselves made directly out in nature? ¥ observations have ve

. lete lcertamly we have looked at plants
orm and color fasci i
o and e Verascfmate us. What about minerals and particularly crys- :
C tere Mostyoft y few (?f us have sought out and scrutinized crvstals in |
. en our interest is limi preci cwe ind
. mited to precious jew indi
- - C‘ "
meetings through illustrations in books P jevvels of indiree
Experience i ‘ |
> 1 1
give pupﬁs en hn school has shown us that direct meetings in nature |
Be P N uch greater return and waken their enthusiasm consid ‘
;} 3 b(.)re, when they have had the opportunity to o
1e subject in advs ion a
MChiteC)turé hii\:ncc. (Tlu.e same observation applies for subjeccts such as
) » lustory, painting and other i ‘
: story, p: areas which we can n g
during study trips and camps, for example..) ' e ep
. Let us begin with:
1. Crystal Shapes

!

and let their language of

acquire knowledge of

Children get great joy

N from tl i
R . re first snow, s ime ¢
A _,Q!3r15tnxas, when King Bore ser fiame belore

wds his myriads of snowflakes. The carth
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i« covered in a white shroud, cleancr than most
other materials which we can find, When the
sun shines on the new snow, it often ghmmers
in different colors, and if we look carctully we
can discover a little of the architecture which
forms snowflakes.

The person who studied the snowflake’s
form probably more
patiently than ahyone
clse was the photog-
rapher W. A. Bentley,
an American who
developed a camera
technique and pho-
tographed a vast num-
bér of snowflakes.
Together with W. J. Humphreys he gave out the book Snow Crystals
(Dover Publishing, 1931) containing 2453 pictures of snow flakes — each
different! One meets here an incredible multiplicity of variations
on one and the same underlying theme: the architecture of the number
six. Figure 3.7.1 shows some of Bentley’s pictures.

Interest in crystals can be traced as far back as the historian’s eye
reaches. 1n Hellenic culture, Plato stands in the foreground among math-
ematicians’ study of geometrical form. The huge mathematical work
Elements, put together over 2000 years ago. comprised 13 volumes
ation reached its peak in the thirteenth and last volume,

Figure 3.7.1

picture

whose present
which treated regular three-dimensional figures, so-called regular poly-

hedra, or, as they also later came to be known, Platonic solids.
2. Regular Polyhedra

Polyhedra are solid bodies, bounded by plane surfaces: triangles,
rectangles, and trapezoids, other polvgons or a combination of such sur-
faces. (Poly = many, hedron = side, face, surface).

How many surfaces are nccessary as a minimum, in order to make
a polvhedron? Two is too few — we just get a “plough” shape. Is three
enough? No, we only get a corner. But if we take four surfaces? Yes, we
can construct, for example, a so-called tetrahedron with four triangles
(tetra = four). We all have seen the “tetrapack ™ which milk, cream or
juice comes packaged in. When the four triangles are equilateral and of

;
]
5
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the same size, we get a regular tetrahedron, and this we note down as one

of the Platonic solids.

Do we know any of the other regular polvhedra? “The cube” is
heard immediately from several directions in the room. Yes, it has six
identical sides, six squares in a regular arrangement.

Figure 3.7.2

——
— —

Figure 3.7.3

More examples? Someone says: “If
we put two tetrahedra together so that two
faces fit together over another, then we get
a body which is formed by six equilateral
triangles of the same size.” This is correct,
but ... How about the corners? “Arc all
the corners ‘the same’?” — “What do you
mean by that?” — “Well, if we look at the
corners in the regular tetrahedron we
notice that all the corners are the same,
and this is also true for the cube. Does this
apply to the double tetrahedron which we
are now considering?”

We look at a sketch on the
blackboard. This time no one wishes
to speak first. I must give a clue: look
and sce how many surfaces meet at
cach corner. Some now answer “three
surfaces,” others sav “four triangles.”
Who is right? Proponents of these
answers go up and point. Both are
rightin a way....

Let us look at Figure 3.7.2.
Where are the corners with three tri-
angles, where with four? At three of
the corners, four triangles mcet; at
two corners (the top and bottom in

the figure), only three meet. The corners are thus different. And we may
therefore not call the double tetrahedron a regular polyvhedron or a

}

Plaonic solid. In such a body it is not enough that the surfaces are all the

same reguiar triangle or polygon. Even the corners must have the same

form. We will therefore have to throw out our double tetrakedron.
What can we suggest now?

f and put the bases together.
[ riangles (Fig. 3.7.3
¢ corners? Around the

F 1t looks promising.
E out of cardboard? In

b e draw a network for our

. proposa

NATURE'S GEOME’

Someonc says:
hake two pyramids w

posed to be cquilateral triangles.

i and at the top an
triangles meet

b vorks for cube

In Figure 3.7.5 we see onc pupil’s
al, which ought to work well.
We cut out the network a.nd fold
creases along certain edges. Finally we
get the cellophane and th.e polyhcdrgn
stands finished. We twvist it and turn it
Yes, all the corners are t.he'samc.. No
one doubts that this solid is cntxr?ly
regular, and 1t becomes our third
Platonic solid. It is called an.ocmhe—
dron, since it 1s bounded by cight sur-
faces.
The class cannot come

upon any furth?r: rc,gplar
polyhedra — and it isn’t casy.

We therefore go on to com-

paring the three we have:

How many corners, edges,

and surfaces does each have?

We make up a table of

the results:

Corners
Cube 8
Octahedron 6
4

* Tetrahedron

We get a solid bounded by 8 cquil'atcral
0 ). How many mect in the
“base square’s corners” 4
d bottom also 4.
Can we make such a solid
Figure 3.7.4 we sce net-
and a tetrahedron. How x.would
double pyramid? )

FRY AND LANGUAGE OF FORM 4t

“A double pyramid. We +
hich have a squarc basc -
The walls arc sup-

A
JAVA

Figuye 3.7.4

: Figure 3.7.5
Edées Surfaces
12 . 6

12 . i )»
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e

Figure 3.7.6

Figure 3.7.7

Figure 3.7.8

)Y

\

Figure 3.7.9

SOmeOne dl
scovers l]lal l]l(_’ “"llll)els 8 a“(i 6

if these two might be

ron. The number of edges is

related in one way or another.

I now lead over

kind of solid

we get when the gro

solid. Figure 3.7.8 show

figures). -
From the cube aro
whose 6 corners are the
"cube’s 6 squares, and w
faces came from the 8 co

\
e understand now the relationship

between the cube and the
table. We are in addition
over the fact that the ocra

billCC [} l. ) ¢ wa on ) m ! a“y
1Cc gr ndln..) \! S» d ne sym et iC .
SOlnC()nC WOI‘ldCI’SZ “h
wWe 01'.r w 1 It d
S 1](1 d(_) £\ corners Of ar OL["IhC ro
n:

Perhaps a new PJ

be 2 i
¢ a completely different question: Why|
arises if w indb
g of sol ¢ gradually grind ¢
: corners of a cube making the
growing surfaces bj i ;
g \Wg faces bigger and bigger?
hera] e.grmd symmetrically so that equi-
§ra triangles are created at the corners
an
l?o that all the corners are ground
equ:
qually much. For example, what is the solid

half\‘va)‘f along each edge of the cube?

I‘rxgurc 3.7.7 shows this stage and 3.7.6
4 previous stage along the way, where e.r‘h
square of the cube has been‘transfornrd
1nto a regular octagon (eight-sided figure) e
orch What happens if we continue grinding |
er and go 5o far that the cube’s square |
w‘jalls finally shrink down o nothin atq h. .
mid-points? Figure 3.7.9 shows tghe f[ineanl’ |

(“CISO ¢asy to dl‘l ') ']lele the glou“d sur
1aC€$ consist 01 Iegu]al he.\aoon -
S S (Slx‘ Slded

atonic solid will emerge?

are just reversed in thy
12 1in both. It seems

into what appears 1}

und surfaces meet

$ a transition stage

se an octahedron,
mid-points of the
hose 8 triangular
rners of the cube.

octahedron in the
completely clear

hedron is regular,

at do we get if
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< Let us sand down the corners in our imaginations, so far

What happen
i-point of the cight triangular surfaces are left.

that oniv the mic
We are going to get a solid with 8 corners. A few pupils ta
geometry seem surce of themselves. (1t is too bad when they say at once
what they have found: it takes away their classmates’ joy of discovery.)
merges as the final form! We might have

lented

It turns out that the cube ¢
expected that, with a clue from the table. Halfway through the transfor-
same solid as along the way from cube to octahedron,

mation we get the
f 8 triangles and 6 squares. Itis called

the solid in Figure 3.7.7 consisting 0

naturally enough a cubo-octahedron.

A new question: what arises if we grind down the corners of the
tetrahedron so that only the mid-points of the triangular faces are left?

This question is casily answered: we get a new tetrahedron, turned
upside down to the original. _

In order to proceed we begin to svstematize the Platonic solids in a
table:

6 faces. 12 edges
4 faces. 6 edges
8 faces. 12 edges

Cube: 6 squares, 3 squares per corner;
4 triangles, 3 triangles per corner;
8 triangles, 4 triangles per corner;

Tetrahedron:
Qctahedron:

What ought to come next? A solid with 5 triangles per corner? Or
one with 4 squares per corner? “No, that is impossible. Then we couldn’t
fold up the cardboard walls.” "Six triangles per corner won’t work either:
they fill out the whole cardboard surface around the corner.” “But five
triangles — that might just work!”

“What might the network for that solid look like?™ I wonder
aloud. Sonie suggestions come up. The starung point is that we draw two

rows of five triangles. But how should these five-sided pyramids be put
together? We help cach '
other reach the conclusion /\A
of

’

that a “zig-zag girdle’
10 triangles 1s necessary.
Now proposals for net-
works start coming up:
they consist of 5 + 5 + 10
= 20 triangles. (Sce Figure
3.7.10). 3

Figure 3.7.10
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Scissors go into action: certain edges
are scribed so that the faces can more easily
be folded up. The pupils help each other in
pairs with the tape.

Look, it fits together; it makes a
roundish sort of solid!” It is called an icosa-
hedron (icos = 20). It would be going too far
to guide the class through an “existence
proof” for this solid. For the majority, the

. successful taping together of the network is

Figure 3.7.11 “proof” enough, and much more tangible

than any theoretical arguments — at the 15 year-old level. (Figure 3.7.11)
We add to the table:

Icosahedron: 20 triangles, 5 per corner; 2C faces, 30 edges, 12 corners

What happens if the icosahedron is ground down, so that only the

mid-points of the triangular faces are left?

“It has to be sohid with 20 corners and 12

faces.”

But what kind of faces? We think
this over. How manv corners must cach
face have? Its corners must lic within the
five triangles which form cach corner of
the icosahedron. This means that the new
solid’s faces have five corners. Why ves,
they must be regular five-sided polygons,

Fignre 3.7.12 so arranged that three meet in cach cor-

ner.
The new solid is a sibling to the
icosahedron in the same way that the
cube and the octahedron are siblings to

each other. _
/;" This fifth Platonic solid is called the
~ § regular dodecahedron, or more exactly,

the regular pentagonal dodecahedron

(Figures 3.7.12 and 13))
Can a solid be constructed with 4
pentagons mesting in cach corner? The

Pigure 2710 answer is no. siaee four peatagons drawn
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on cardboard must overiap cach other. Can we succeed with a solid of
three hexagons? No, they fill up the surface of the paper around a corner
exactly.

We now realize that we have found all of the regular polyhedra
which exist; that s, five.

Let us once again look at the pairs of opposites, the cube-octahe-
dron and the icosahedron-dodecahedron:

Cube: 3 four-sided faces per corner; 6 faces, 12 edges, 8 corners
Octahedron: 4 three-sided faces per corner; 8 faces, 12 edges, 6 corners
[cosahedron: 5 three-sided faces/corner; 20 faces,30 edges,12 corners

Dodecahedron: 3 five-sided faces/corner; 12 faces, 30 edges, 20 corners

We say that these paired solids are duals of each other, two by two.
The tetrahedron, which when grounded down, is transferred into itself,

is said to be self-dual:
Tetrahedron: 3 three-sided faces/corner; 4 faces, 6 edges, 4 corners

3. Crystals — once morc

Now, what do these five Platonic solids have to do with crystal
forms? Are there crvstals which take on the forms of Platonic solids?
Yes. The very simplest example is kitchen salt. It can crystalize in cubic
form. It can also have one side longer than the others and become box-
shaped. The kitchen salt crystal is completely transparent and as colorless
as ice. One might even mistake it for a piece of cut and ground ice. “Who
ground it?” someone asks. “Nature herself — but she has not actually
ground it; it grew that way, by itself!”

We take a look at gold-glimmering, cube-shaped crystals. On some
of them sits, slightly crooked, a much smaller cube, “like 2 little crystal
child,” someone adds. “ls it gold?” — “No, it is pyrite, which is formed
when iron and sulfur combine with each other in certain proportions.”

I bring out some other gold-shimmering crystals, octahedra this
time. Yes, these are also found in magnetite or lodestone (magnetiz iron
oxide, mined in Kiruna, Sweden, among other places) and in fluorite (cal-
cium fluoride). The latter forms vellow, blue, violet, or yellow-violet
octahedra. An almost pure regular tetrahedron form is found in

. Fahlband (German: Fahlerz); the crystals have a metallic glance and con-

tin copper and sulfur, as well as one or several of the elements iron, anti-
nomy, arsenic, silver, and mercury (Figure 3.1.14).
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Figure 3.7.14

Figure 3.7.15

¥

Figure 3.7.16

-l
2

u
I

A Figure 3.7.17

Schematic pictire of a Herpes wivns

;
Pyrite can also form dodecahedn
In Figure 3.7.15 we see a group of p_\'ri(ef
crystals in which nature has formed par-;
tial dodecahedra. If one looks very closely;;{ ;
at such crvstals, one should find that they-‘:.
are not completely regular. The fivc-sided%; ‘
figures which make up the faces of the}
crystal are a little bit too wide in one}
direction (Fig. 3.7.16). i
4. Other Areas of Nature

Strangely enough nature does not
produce crvstallic regular icosahedra or
dodecahedra. (We will not go further into?
this here). But in another area of nature,’
an area which could be said to lie between 7§
the mineral and plant kingdoms, there do
exist regular icosahedra and in some casei
dodecahedra: among the viruses. Figure§
3.7.17 shows a schematic picture of 1
Herpes virus, drawn according to pictures ¥
taken with an electron microscope. Ing
Figure 3.7.18, also taken from Scientific |
American (Number 1, 1963), may be seen
“shadows” of an insect virus, obrained by |
irradiating it in an electron microscope.
The shape of the shadows reveals that the
virus body itself has the form of a regular ¥
icosahedron!

Even radiolarians (an order of sin- § :
gle-celled sea-animals with long slender
pseudopodia “radiating” outward) show |
the regular icosahedron shape — namely
in their skeletons, built of silica. They
were studied by Ernst Haeckel, who |
made many interesting and detailed draw-
ings of them (Fig. 3.7.19). L

Numbers 2, 3, and 5 in the figure
have the forms octahedron, icosahedron !

P

i

Ry

5

e A R N T AT s i

Figure 3.7.18 (From Scientific Amcrican 1963/1.)

Figure 3.7.19
Radiolarian
drazwings
From d’Arcy
Thompson
“On Growth and

Form”
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and dodecahedron respectively, and take their Latin names from these
shapes: Circoporus octahedrus, Circogonia icosahedra and Circorrhegma
dodecahedra. So here we have even been able to find examples of dodeca-
hedra in nature.

When we say, for example, that fluorite crystals are octahedra, we
must keep in mind the fact that the crystal-faces are not perfectly flat
surfaces. The same applies to he radiolarians. But it is nonctheless obvi-
ous that the architectural form is regular. With the radiolarians the sur-
faces are somewhat curved, but the vertices form the corner-points of the
Platonic solids. That pyrite crystals are not completely regular dodecahe-
dra, however, has other explanations.

In Scientific American, Jan. 1983, there is an article “Platonic
Chemistry” (p.59), where the synthesis of a molecular dodecahedron is
reported. It was achieved by researchers ar Ohio State University. In
1982, according to a Swedish newspaper, an Israeli physicist, Dan
Schechtman, then working at the American Nartional Bureau of
Standards had succeeded in developing a technique, by which he manu-
factured dodecahedric crystals containing aluminum and iron atoms. The
atoms took the positions of the twelve corners of a regular octahedron.

3.7.2 Curves and Curve Families

In spite of the richness in variety we would have to say that crystal
forms are characterized by very strict “laws.” For example, two surfaces
always meet in a straight line edge. In plants and animals we find com-
pletely different principles of form. There the curve, the curling form,
plays a major role. We shall soon pick out a few important examples, but
let us first begin with the straight line and the swerving curve as basic ele-
ments for two-dimensional forms. Among curves we can consider the
circle as the primary opposite of the straight line. This reflects itself in
the tools we use: straight edge and compass, tools which trace their roots
to Euclidean geometry’s childhood 2500 years ago. If we wish to sce
curves as the result of one or more movements, we can begin with two
basic motions: movement along a straight line and rotation.

. Example 1: We can ask ourselves: what sort of curves arise when
we combine the straight-line movement with a rotation? We let a point
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simultancousiy surrender itself to both
a straight-line and a wurning move-
ment. What kind of motion does the
point describe?

We can imagine that a little ball
moves straight out from the center of a
phonograph turntable, at the same
time as the turntable rotates. How
does the ball’'s motion look relative to

the stationary table? It is a spiraling

curve. '
1 Figure 3.7.20
But we nced to be more precise g

about how the movements come
about. To begin with we choose the
simplest motion: the point moves with
constant velocity of 1 em/second on
the disc and the disc rotates at a con-
stant speed of, let us say, %: revolution
per second around its center.

We can now draw a number of
concentric circles a ¢m apart, and
divide thesec into sections with 12 rays
from the center. If the moving point
starts at the center, it will describe the
type of spiral motion shown in Figure
3.7.20. Irrespective of what values we
give to the straight-line speed and the
speed of rotation, just as long as they
are constant, this kind of spiral is
called an Archimedean or arithmetic

spiral.
We now vary the theme and let

the straight-line movement be acceler-
ated, such that the moving point’s dis-
tance from the center grows second by
second according to the geometric
sequence 4, 6, 9, ... (each radius = 1.5

times the next smaller radius). The 2
St

f‘l{”‘l‘ 3.7.22
(xS
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Figure 3.7.23

Figure 3.7.24
{From Adams/Whicher, The Plant
between Sun and Earth, /952).

Figure 3.7.25

(From d’Arcy Thompson, On Growth and Form)

rotation is the same as before. We get

now a considerably more dynamic spiral
(Figure 3.7.21), the so-called logarithmic
spiral.

Figures 3.7.22-23 show families of
the Archimedean and the logarithmic spi-
rals respectively. Diagonally situated
“parallelograms” are colored in. What
happens with these parallelograms, in
their respective figures, as we move out-
ward from the center? The class has no
difficulty secing how the Archimedean
parallelograms change shape, they
become wider, while the logarithmic spi-
ral’s parallelograms seem to keep their
shape. They only get bigger. This obser-
vation is correct: one can show that the
logarithmic spiral continually curves at
the same rate, while the Archimedean spi-
ral, as we have scen in the pictures, adapts
itself more and more to the circle’s form.
Do these spirals exist in nature? Let us
look at Figures 3.7.24 and 3.7.25 which
show respectively the elegantly formed
sea conch Nautilus (in cross section) and
the mollusk Solarium perspectivus.

Figure 3.7.26 shows Irtalian
cauliflower — an architecrural master-
picce, where the spirals in the
head of the cauliflower are
found again in successively
smaller scale in the miniature
“heads” which make up the
spirals. Here we have spirals of
spirals of spirals, as far as the
cye can.reach. In this example
and the next the spirals are log-
arithmic.

i
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Jn Fipure 3.7.272 we scea
photograph of & suntlower (from
Adams/Whicher, The  Plant
between Swun and Earth, 1952).
Adams points to the sunflower’s
center, the glomerule or sced cluster,
as an example of spiral formation n
the plant kingdom. Let us study the
photograph closely and notice that
the cluster contains rwo svstems of
spirals: on the one the spirals turn
clockwise in toward the center, in
the other counter-clockwise. The
latter spirals are longer.

Take a magnifyving glass and
trv to count how many spirals
there are, going claockwise and
counter-clockwise respectively! We
have counted spirals in sunflowers
growing on the school grounds and
come to the same result: 55 clock-
wise spirals and 34 counter-clock-
wise! Let us now refléct upon the
following quotation from Scientific
Amterican, 3/ 1969

The most striking
appearance of Fibonaca
numbers in plants is in the
spiral arrangement of

seeds on the face of cer-

ver

Sunflower

GEOMETRY ANDLANGUAGE OF FORNMIIN

Figure 3.7.27a

cain varictics of sunflower. There are two logarithmic spirals. one set

turning clockwise,

illustration on the next page. (Figure 3.7.27b)

the other counterclockwise, as indicated in the

The number of spirals in the two sets are different and tend to

be consecutive Fibonacei numbers. Sunflowers of average size usually

have 34 and 55 spirals, but giant sunflowers have been developed that
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go as high as 89 and 144, In the letters department of The Scientific
Monthly (November, 1951) Daniel T. O’Connell, a geologist at City
College of the City of New York, and his wife reported having found
on their Vermont farm_one mammoth sunflower with 144 and 233

spirals!

Figure 3.7.28

Example 2: In Figure
3.7.28, points A and B are the
points of origin for two
motions {each represented by a
family of circles) expanding
outwards at a constant rate,
What is the motion of a point
which:

a) goes outward from A
and simultaneously inward
toward B?

b) removes itself simulta-
neously from A and B?

We first have to extend
the families of circles so that
they intersect one another.
Then it is only a matter of
drawing beautiful curves
through appropriate intersec-
tions, and we get the family of
curves in Figure 3.7.29:

the one family (a) shows
us cllipses,

the other (b) portrays
arcs off hyperbolas.

Such a pattern occurs
when c¢ircles spread out in
water from two centers; one

speaks of interference patterns. Such patterns playv a very important role
in all technelogy which uulizes wave motion.
Example 3: Two straight-line motions van interact (o create acune

in a completely different manner than they did in Fxample 20 We letiwo

points A and B move
 along two respective lines
¥ aand b with, let us say, the
f same constant speed. We
} mark off the position of
E the points at evenly spaced
f intervals of time (Figure

3.7.30).
How do the con-

t necting lines move? We

have only to conncet suc-

| cessive A-points with their

respective B-points and

 see what emerges: Figure

3.7.31. The line rotates and
creates a beautiful curve, a
close relative to the cllipse

- and the hyperbola, namely

a parabola. (The figure
shows only an arc of the
parabola.) The interesting
thing is that the figure
obtained gives the impres-
sion of three-dimensional-
ity: one can see a
saddle-like surface. In
actual fact the figure may
be seen as the plane pro-

B jection of a so-called

parabolic hyvperboloid, a

4 saddle-shaped surface with

many beautiful character-
istics.

The main importance
of Example 3 is, however,
that the pupils experience a
completely different way
of generating a curve than
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Figure 3.7.29

w,(

Figure 3.7.3C
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Figure 3.7.32

the otherwise common method — that which we used in Examples 1 and &
- 2: constructing points on the curve. In Example 3 the curve is slyaped_by- &
straight lines which will become tangents to the curve. There are mnnyé
beautiful examples of constructing curves as the boundary of a group of :
lines or planes, so-called envelopes. Such figures are especially beautiful ifg]
they are drawn with white pencil or ink on black or blue paper. Figure

.32 shows an example.

CURVE TRA NSFORMATIONS 1155
' 3.7.3 Exercses

I. Figure 3.7.4 shows networks for the cube and the regular tetra-
hedron. How many different networks exist for these respective solids?
Two networks are considered identical if the one can cover the other.
Rotation and mirror imaging ‘thus do not give new networks. In addi-
tion, adjacent faces in the network must have a common edge (it is not
sufficient for them to have only a common corner).

Finding all possible different networks for the cube is a combina-
toric-gecometric problem which usually really gets the students engaged
(ninth grade). One of the questions which comes up is, “How do we
know when we have actually found all possible networks?” We have o
figure out some sort of system for numbering the networks. Yes, we have
to order them in a logical sequence. This 1s a task which fits well together
with the problem we discussed in Section 3.2.

2. Make a regular dodecahedron and study it to see if you can find
$ points which would form the corners of an “inscribed” cube.

3. Draw a sketch showing how four of the corners of a cube deter-

mine a regular tetrahedron.

4 Start with the same drawing as in Exercise 3 and continue by
drawing in the tetrahedron which is determined by the other four cor-
ners of the cube. Finally, try to make clear the solid which these two

tetrahedra together form (Kepler’s twin tetrahedra).

5 Draw networks for the solids shown in Figures 3.7.6 and 3.7.8,
and do this in such a way that these solids may be inscribed in a cube of

chosen size.

3.8 Curve Transformations

Transformation is one of the most important principles of
nature’s forms. Perhaps the most striking is the burterfly’s development
from the larva by way of the pupa stage. Other great transformations
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can be fomfnd, for example, in the tadpole’s growth into frog and, in
h_umnn beings. in the embryo’s transformation into fetus. Even pla.nts
give us'bcautiful examples. Take, for example, the different stages of the
dandelion. Simply observing the changing form of the flower central
base, we can discover a surprising sequence of phases. The central base
transformation makes possible the changes in the various stages: bud
flower, seed bud, sced sphere (Figure 3.8.1). o

alled projective geometrys which in this book can only be hinted at, lays
the foundation tor more sweeping metamorphoses.
Next we shall look at four examples, which do not require special

E | p_rcrcquisitc knowledge.

3.6.1 Four Examples

Example 1: From classical
Greek geometry We take the curve
which is called cochoid. (It was
introduced by Nichomedes as a ~x A
- 100l for solving the classical prob-
lems of doubling the cube and tri-
secting the angle.) A line a and a
g point P (not on the line) are the

_ starting elements. Through P a line XY = 9 mm
pis rotated. We call the intersec- :
‘¥ ton with line a X. From this inter-
section X we now mark off linepa
given distance \0Y, in the direction
of point P. To begin with we take XY =15 mm
XY as a small distance. What curve
' described by the point Y, as line
p rotates about point P? And in
particular: how does the curve
change as the length XY grows?

(Nichomedes took interest Xy = 26 mm
~ primarily in the case where the ‘
distance XY is marked off so that
Y lies on the opposite side of P
from linc a.)

Point P can be suitably
placed at 50 mm away from line a.
A few symmetrically chosen lines
r‘f through point P can then represent
the family of lines p. Tor the dis- Figure 3.8.2

AP = 15 mm, XY = 4 mm

Figure 3.8.1

We will. by . . ) . .
We will, by and large, here have to limit ourselves o the simpler
cvpe of wansformauvon, which can be called curve transformasion. Sa-

XY = 37 mjm
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tance D ] i i
ans 8;(Y.wc might choose the tollowing: 15 mm, 35 mm, 50 mm, 60n
nd 80 mm. E e v ,
” m. Each of these values corresponds t0 a conchoid cu’rve( ;
Figure 3.8.2). (Other values have been chosen for the lengths XY and t
: ‘ : ‘ s and A
in the\ix/gurc, with consideration to the size of the book ) |
c m . - . . ’ B
- ay now in our imaginations follow the conchoid’s continuog
> i v
s C r,;r-xa;lon as we increase the length XY. In the vicinitv of point
rises g e “hill™ which ¢ i 1 ‘
e 1\'1Yttbc hill” which changes into a pointed peak, when XY = A§
\ en ! ecomes larger than AP, the conchoid
ccomes a so- 1
peee x1YS(') called double point. After that the loop grows withoe:
it ;; t I’tsha\llowc}:i to grow beyond all bounds. To the sides awi i
it P the conchoid come
: es nearer and nearer to li 4 arbi
Iy e Pt co : : 3 iine a and arbitraf
S on both the far left and Far ri i “
‘ : and the far right, Lj is th
asymp;ote for all the curves in the family. i neant
If ir ; ing ¢ i i l |
| 1stc_ad of drawing conchoids with respect to a single line,
draw conchoid arcs in relation to three line se f ming an cqud
: . _ gments forming . ilat
draw < ‘ g g an equila
era x?nglt.z with point P at its center, we obtain the closed curcies i
shown in Figure 3.8.3. The transformation then makes g
impression.

makes a loop above P

an even strongy

Figure 3.8.3

CURVE TRANSFORNMATIO NS HESY

Example 2: We are given a circle C and a fine passing through the
circle center M. On a line a we are also given a point I which coincides
with M to begin with. What does a curve K look like, whose points lie
cqually distant from circle Cand point I? (I and M are the same, to start

with.)
A moment’s reflection shows it to be a circle with center at F, con-

centric to C and with half the radius of C.
We now let C grow by moving M to the right on line a, keeping the

“left-hand intersection of the circle with line a fixed at point V. We get a

family of larger and larger C-circles, all passing through V. How does the
curve K change as C grows? (We note that V is fixed.)

The pupils make free-hand N
sketches, before we begin to analyze
the problem more closely. While they
are drawing their figures, they come
upon the fact that K must be a closed
curve. Is it oval, egg-shaped, or what?
In Figure 3.8.4 X is a variable point
on curve K. We extend the line seg-
ment MX out to intersect the circle at
N, obtaining the length MN. In order
for X to lie as far from F as from the
circle’s edge we must have FX = XN. From this it follows that

FX + XM = NX + XM = NM = C’s radius FX + XM is thus con-
stant for all points X on curve K. The curve is determined by the equation

EFX + XM = constant (= radius) (1)

From (1) it follows further that the points F and M plav identical
roles for the curve; it must be symmetrical not only about the tine a but
also around the line bisecting FM: the perpendicular bisector ot M. The
curve is thus doubly symmetrical. Equation (1) specifies, quite simply,
the curve which we call an ellipse
(Fig. 3.8.5).

How does the ellipse change
as the circle continues to grow? A
few constructions show that the
ellipse not only becomes larger but
also more drawn out. Finally, if we
imagine a circle C with an

Frgure 3.8

Figure 3.8.5
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Figure 3.8.6
Parabols. FX = XN

Frgure 3.8.7
Arcofa hyperbois

V(£

M) : (M)

/
/

Figure 3.8.8
Hyperbola

“infinitely large radius”, then
M must be “infinitely far
away,” and of the circle we sce
only a straight line passing
through V at right angles to a.
Our curve is then stretched
out infinitely and is called a
parabola (Figure 3.8.6).

What happens with our
curve if the straight-line circle
“flips over” and becomes a cir-
cle with center to the left of V2

Once again we have
that XF = XN, but this
equality can now be written
XF = XM - r (Figure 3.8.7)
or XM - XF = r, where

r = the circle radius (2)
X now describes half of a
hyperbola.

If we change equation
(2)ro XM-XF=%r
that is IXM - XFl = constant

(3)

then the points M and F once
again play equal roles, and we
have the ¢omplete hyberbola
(Figure 3.8.8).

As the value of the con-
tant in (3) goes toward zero,
the hyperbola straightens
itself out; its two branches
come nearcr cach other and
close in from both sides on
the line bisecting and normai
to the segment ME,

Hothe cirele € we start

with iy veryv small, we can

fshow us that cllipses and hyperbolas
Ecan be seen as addition and subtraction

Fof the cllipse and the hyperbola as pic-
f torial cepresentations of addition and
Esubtraction, respectively, is brought

¢ (cllipses and hvperbolas) which we
E constructed carlier in Example 2 of the

| previous scction 3.7.2.

be said to correspond to multiplica-
' tion and division, respectively?

CURVE TRANSFORMATIONSI16]

ymmarize the curve trnasformation as going from a litde circle through
rowing cllipses to an infinite parabola to flatter and flatter hyperbolas

o

land finally to a double line. (Figure 3.8.9.)

The cquations
(1) XM + XF = constant and
(2) IXM - XFl = constant

curves, respectively. This characteristic

out clearly in the curve families

1

Example 3: What curves might
Figure 3.8.9

If A and B arc two given fixed points and u and v are the respective
distances to them from a point X, then equation

u + v = const. gives an ellipse and the equation
u - v =const. givesa hvperbola.

We now form the equation  uv =k (€)]
u
and | =F (5)
where k and [ are positive constants and u and v are positive variables.
Let d stand for half the distance between points A and B and to begin
with we choosc
k =d* inequation (4).

3

Our task is now to draw the curve corresponding to the equation uv=d

L -d (6

or in another form

With u=v=d we get a point on the curve which lies halfway between
A and B on the line through them. How to obtain other pairs of values
for u and v is shown in Figure 3.8.10, which builds upon equation (6).
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Figure 3.8.14
Lemniscale ;v = 4
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With the aid of 4 con
We can as a rule obrain 4 poi
on the curve for every p
va'lues u, v, symmetrically |
with respect to A and B
could, of course, have ler y b

exchange

he curve we get is the so-c
lemniscate (Figure 3.8.11).

/’rom this follows thar - 4
P satisfy wv = di, The 4s*

an
places in equation

For k-vy

less than d* the i
is divided up in
two ovals, Fo
values greater
d*, we obtain simﬁk
closed curves wh
are bean-shapedj
start with but whij
straighten out af]
thereafter turn infil

el ke hater s e i
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The curves obtained are called Cassint curves after the French
astronomer j. D. Cassing (1625 1712). '
least when the k-value is not fixed, can be

A simple construction, at
obtained in a manner like that which gave us the ellipse and hyperbola

familics in Section 3.7.2. Instead of letting the circle radii grow by con-
stant amounts as we did there, we let them increase as a geometric

sequence. For example, we might choose the values
r = d, kd, kd, k'd, . .. (k = a positive constant, ¢.g. k=1.2)

r=d.d/k.d/ky d7kS, ..

and

for both u and v values. We then get two sets of geometrically expanding
circles about A and B. The A and B circles intersect one another. By con-
necting points which simultancously move outward from A and inward
toward B we get Cassini curves: the product uv remains constant, since v
is divided by k at the same time as u is multiplied by k.

Ou the other hand, if we connect points which simultancously
move outward from both A and B, we obtain the curves corresponding

to cquation (5),
% = a constant F

How do these curves look? With our construction method here 1t
is not casy to make them perfect but the suspicion definitelv arises that it
could be a question of circles. A closer analysis shows that equation (5)
actually does give circles for I # 1. They are called division circles, har-
monic circles or Apollonios circles (after the Greek who studied them
closely). (See further Figure 3.8.13 and Exercise 5.)

When the constant F inequation (3) grows from small values
toward infinity, the division circles grow from tiny circles containing A
to larger and larger circles, flip over to the other side of the perpendicular
bisector of segment AB (when F = 1) and become circles “containing™ B'.
The constant value F = 5 gives the same circle “containing”™ B as the circle
for F = 1/ 5, containing A. Finally, as F =% oo, the circles enclose B all
the more tightly . Figure 3.8.14 shows this family of division ctrcles.

But where is the quality of transformation in this family of circles?
Is it not simply a matter of a circle which grows in size and simultane-

' 1t is actually more natural to continue sceing B as an external point to the
circle. Refer to the discussion of the “projective ™ viewpoint which fallows later in

this section.




Figure 3.8.13

Taco circie families with r, ] J 7 .

Jwo carcic “ .mln in geometric proportion (k = 1.27). The figure shows two
assini curves and three pairs of harmonic circles.

ously changes position? The transformation quality first comes to light
when we see the family of circles from the perspective of projective
geometry. In the next section we will take up some of the basic ideas of
{Tro]ectwe geometry. Here we begin simply by introducing the projective
ine. ’
. 'ln classical Eu.clidean geometry a line extends infinitely in both
driens Op s vn i mombes o b s v G bk
e positive < ion and . bé[l»C. e‘lmehxs endless in both of its

ections. A projective line arises from the Euclidean when we append
an mfn?xte]y distant point to the line (and on the line). .

E-_lgur_c 3.8.15 shows a given line a, a given point p above the line

and a line p through point P, intersecting line a at point X.

CURVETRANSFORMATIONS {165

¥ ues to rotate, the
§ intersection X
F passes through A,
4§ and then returns
F from the left at a
§ finite distance. X

Figure 3.8.14

- Harmonic circles corresponding to

F =% % % % and % (the largest circle) and to
F=5,4.3, 2and % respectively.

F = I'gives the perpendicular besector to AB.

As line p turns counter-clockwise about P, X moves to the right on

line 2. When p becomes parallel to a, then according to classic gcometry.

there exists no point of intersection between them. According to the con-
cepts of projective geometry, we ascribe a common point to lines a and p.
namely a “point at infinity,” A, on line a. Line p too has a point of
infinity, Poo. Since p runs parallel to a, P, and A, coincide and make up

the common point
of pand a.
As P contin-

P

Figure 3.8.15

moves continuously in the same direction, always to the right. That X
goes off to the right, through line a’s point at infinity and thereby comes
back from the left is an idea we cannot clothe in physical form.

" Considered physically the idea is grotesque. In projective geometry.

however, it has a function to serve.

+

~7(
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Reconsidering now the growth of harmonic circles from a projec
tive viewpoint, we can describe the circle center’s movement with]
increasing factor F as follows: the center moves to the left_on line ABJ
becomes the point at infinity on AB when F = 1, and returns in from thej
right as F grows larger than 1. ,

For F = 1 the circle’s interior is the half-planc to the left of the per-
pendicular bisector to AB. When the circle “flips over.” its “inrerior” —
if we wish to maintain continuity — is that which we would normally§:
call the region exterior to the circle. Compared to our habitual way off
looking at things, this implies an essential transformation. Let us go alit ;
tle further with the following example. l.

Example 4: We let A and B be two fixed points. To begin with, the
are the end-points of the diameter of two coincident circles ¢, and ¢,. Leg
n denote the normal bisector 1o segment AB, and let M, and M, be the
centers of the respective circles (Figure 3.8.16).

A We now let the centers move at th

n, M, to the left and M. to the right. We?
also require that the circles ¢, and ¢,
always pass through the tixed points A
B and B. This leads to the growth of the cir
cles and to their beginning separation;
from one another. The plane is hereby!
divided into various regions. :
Let us classify these regions as follows:

No shading: area not covered by either circle
Horizontal shading: area covered by ¢, only

Vertical shading: area covered by ¢, only
Checkered shading: area covered by both ¢, and ¢,
{See Figure 3.8.17).

Figure 3.8.16
M, =M, = Center

€ A AT How does this picture of 3
/ the plane change, as M, and M, 1
}’_7 ‘move away from cach other]
o . cctive line n? 4
€ M, ) n  alongthe projectivelinen? g
\ Figure 3.8.18 shows the il
p s

R
rre 3.8.17 there arises a quality renunis-

]

b

b BL ' result. In this transformation 3

i
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Ality we are familiar with in photography.

cent of the negative-positive qu pho phy.
estioning of the

But it entails considerably more than that, namely, a qu
whole concept of inner and outer, shaking up our tume-
thinking that “inside is that which lies within.

o = il

worn habitual
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3.8.2 Forms in Nature, Revisited

e ) . v o cametimes shed
Familiarity with geometncal metamorphoses can sometime

natural forms where we would least expect similarity or

light on ditfering . . _
; 3.8.19 showing craniums ot a

polarity. This is exemplified by Figure
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human, a chim-
panzce, and a
dog. (The figures
are taken from
d’Arcy Thomp-
son’s classic work
“On Growth and
Form™.)

An interest-
ing polarity may
be found compar-
ing man’s head
¢ and his thigh

bones: in the head

we find the hard
) bone on the out-
side and the soft parts inside the cranium. With the leg it is just the oppo-
site: the soft parts are found outside around the bone. The cross sections
of the head and thighbone are very nearly circular and hyperbolic,
respectively. A comparison with Example 2 above lets us guess that skull
and legbone are cach other’s opposites in the same way that the interior
of a circle is on the inside while interior of a shallow hyperbola, in con-
trast, is found on what we would normally tend to call the hyperbola’s

S ==
\ ARSZ200)

Figure 3.8.19

“outside.”

3.8.3 Exercises

1. We look back at Example 1 in Section 3.8 and choose the dis-
tance XY so that Y is on the other side of P, opposite line a. Draw the
curve which point Y describes, for different values of segment length XY.

2. What limiting form does the conchoid curve of Example 1
approach, as segment XY grows unboundedly?

3. Is there also a Bimiting form in Figure 3.8.20 as length XY grows

unboundediv?

SPHERICAL GEOMETRY 1169

4 Generalize the transformation of Figure 3.8.18 to include three

rcles. Acthe start all three circles coincide. If A, B and C arc three fll\'C(}
points on the common circle, located such that they form the corners od
al triangle, then the three circle centers ar¢ to move outwar

] i i id-poi he triangle’s sides.
 Jlone lines passing through the mid-points of t ' ; '
e Thpc): sketch below shows how the “overlapping figure in the .

' i i i in form.
middle” (the intersection of the three circles) chaﬁgcs in

jan equilater

5. Prove that the division curves of Example 3 in this section truly

are circles.

3.9 Spherical Geometry

3.9.1 A Few Basics

In their tenth vear in the Waldorf schools pugils leafn to command
' the triangle theorems of trigonometry which make it possxb.lc.to ca(l*culat.e .
" the sides and angles of any triangle we like, yhen suffxcxent' ata is
§ hown. Work in geometry is crowned with a pcrloc:l‘ of mangulauonlout
" in the ficld. We have, in a certain sense, .compl.cte commandh of p a_naeI
i geometry: We are no longer bound to right triangles and other speci

;  Cases.



~stars, or with the areas of regions on carth, ¢.g. rounded polar caps or 3

_whose areas are of interest.
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In the eleventh vear, during a shorter period, we tackle the sphere

— preferably after an introductory study of some important surfaces of]
: ’ . . ’ ’ . 5
_revolution, such as the cylinder and the cone. We go here directly to the]

..question: how can one determine distance on a spherical surface (e.g 2!}

ball)? Two points on the sphere are given to us. How do we find the dis-§
tance between them? Here no pupil has to pay the price of asking,
“What use is all this?” — a question which usually is a sign that the
teaching has not been concrete enough. The application lies clearly
before us: how does one determine the distance between two places on'\”
the earth? :
Another important problem concerns navigation. On board a shipil

or airplane, how can one with simple tools determine one’s current posi- 4
tion? ‘
Other important applications of spherical geometry have to do

with the position and movements of the sun, the planets, and the fixed

four-sided zones on the earth. Some of the American states have borders:
which fall along meridians (longitude circles) and latitude lines (circles of &

R
constant latitude); the carth’s climatic belts also form zones and caps!

In short, here are problems and methods worth studying. The most
important question during this partial'study period, however, is this: how!
should one build up a geometry for the sphere, starting from basics?

On a plane we measure the distance between two points along the !
straight line joining them. Such lines serve as “distance lines,” so-called ;
geodesic lines. What kind of curves would geodesic lines form ona
sphere? :

We take a large rubber ball to our aid and mark off two points on |
its surface with chalk. We turn the ball so that one of the points comes to .
the top. Now, how does the shortest path to the other point go? “Along
a circular arc which you draw straight down — south, if the first point s
the North Pole.” We draw this arc in by free-hand and discuss whether
the answer is correct. The discussion doesn’t give a strict proof, but it -
casts so much light on the problem that the solution with the southerly )
circie arc seems unique and clear. What radius does the circular arc in |
question have? The same radius as the sphere. 1f we lay a circular are |
with smaller radius through two points, will the distance along this arc
lh):_c'f‘_‘grcntcr? Yes, we see that. (Figure 3.9.1). :

SPHERICAL GFOMETRY 11T

. —_—
The shortest distance between two P ~
points on the sphere follows the so- / \\
called great circle arc between the points _—a .
(the great circle has maximum radius = e ~Q \
the radius of the sphere). If the pointslie 1, . \\ !
(S

diametrically opposite one another, as
the Poles, for example, then infinitely .

\ b
I/
many half great circles. go between them. .
They are called meridians when they go
from pole to pole. Through Greenwich,
néar London goes the zero-meridian,

1 Frowure 3.9
which everywhere marks off 0° longi- ¢
tude. Together with the equator, which A "
latitude, the zero meridian forms the basis for a network which

the location of places and the position of ships and
increases eastward to

¢, = great circle

marks 0°
allows us to specify .
airplanes. As shown in Figure 3.9.2a, longitude A es >
180°. while westward we let it decrease to -180°. The meridians for 180

’

and -180° lie precisely opposite the zero meridian.
. D a
Latitude @increases northward to 90° at the North Pole and

decreases southward to -90° at the South Pole (Figure 3.9.2b).

A

* 180°

.

-S0* " \
-
A
s e 3.9.72
Figure 3.9.2a A=0 Figure 3.9.2b

\(/l[h IelatHCl\ \_OOd aCCUlaC) we can XCplCSCﬂ( th(, L«“[}l as a
~I_ et (N . d é .1nd at
S 1}lefe \\}1056 great Cir 165 are 40,000 kn] long On [hc merigilans

the equator, 1 degree corresponds to.

42200 km, or rounded off, 111.1 km.

362
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“

Figure 3.9.3

Figure 3.9.4
The angle between two great crvcles.

a+p =180°

N~

Figure 3.9.5

ZP
Z

Teco great dreles forn four

“2-cornered” polyy

ans.

CLASSROOM

The nautical mile, a measure of dis-
tance at sea, is 1760 of a degree of length, 1e.

L1

0 km, which gives 1.852 km.

Let us now return to the building
up of spherical gcometry and ask: how
do parallel lines run on the sphere? First
of all we must observe that all great cir-
cles intersect one another. No pair of
parallel great circles exists. What curves
could then run parallel with a great cir-
cle? Clearly a family of circles with
smaller radius than the great circle.

Curves parallel to the equator are
called naturally enough parallel circles
and give constant latitude. They are also
called lines of latitude (latitude = width)
in this context. (Figure 3.9.3.)

When two great circles intersect
cach other, they do so with a specific

‘angle, which is determined by the angle

berween the tangents to the two circles at
the point of intersection. This is a defini-
tion which quite naturally corresponds to
the definition of angle between two
curves in a plane (Figure 3.9.4.).

Where two great circles intersect,
two adjacent angles are formed which
together make up 180°.

When 3 great circles intersect one
another there arise a number of spherical
triangles. How many? There are actually
8 formed. Two great circles form four

“2.cornered” polyvgons (Figure 3.9.5-6).

For angles in a spherival triangle,

we alhoew all values under 1807, just as in

plane trangles.

R
)
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Figure 3.9.6

Tiree grear civeles ¢ e and ¢ form 8 triangles:
On toc front:

1. ARC

2 ABC

3. ABC

4 ABC

On the “back” side:
I ABC

2 '1BC

J 'lBC

4 ABC

3.9.2 What is the Sum of Angles in a Spherical Triangle?

Isn’t it 180°% This is asserted by some pupils, referring to the old
familiar statement thac “the sum of angles in a triangle is 180°.”

But docs this thecorem apply even on a sphere? Soon an opposition
gathers strength and points out the spherical triangle comprising a one-
exohth section of the whole sphere and which has right angles in all corners
(Figure 3.9.7). Its sum of angles is in fact 3 - 90° = 270°! “Of course, one of
the angles can go up to almost 180°. The triangle is then close to a quarter
sphere (Figure 3.9.8) and the sum of angles is near to 180° + 2 - 90° = 360°.”

Lo

fzg are 3.9.7 Figure 3.9.8
Swm of angles 270° Sum of angles near 36C°
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Figu-rt; J.9.10
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Spherical triangle with sum of
" angles near 3.180° = 540",
It covers almost half the globe.

Can the sum be even larger? (The teacher is never satisfied!):
Fantasy now begins to wane, but someone suggests that our “almost- |
1/74-sphere” ought to be able to be expanded downward and include even
‘more area. What happens if we extend the two short sides of our near-

360°-triangle downward and let the long bottom edge instead shrink |
_smaller (Figure 3.9.9)?

Will not the two 90° angles then
become larger?

C

where we have cut away an insignificant
“pie” wedge, whose center angle is small,
say 3°. .
We divide this big circular disc into
three equal parts (each with 89° angle),
draw radii and fold up the paper into a
, shallow cone (with point downward).
ATT—""8 The three arcs then form the sides of a
spherical triangle, which in our imagina-
tion is a-hemisphere arching high over the
cone corner“'(Figurc 3.9.11). As can be
seen, the angles in the spherical triangle
we get will ali be nearly 180°.

gure 3.9.9

A
Figure 3.9.11

Thé'co

Ehe conclusion is that the sum of angles in a spherical triangle can
7 fromslight]y-more than 180 (a“smal] triangle, flat and almost in the .

to slightly less than 540° (a triangle covering almost half the sphere).
'5.4_:,:.' T Pt . .

We make a paper pattern is in ;
Figure 3.9.10. It is simply a circular disc
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: ol ew 1V dovrees). which we ¢
Closer investigation of the sum of angles (V degrees), which we do
not go into here, reveals a lincar relationship with the area of the triangle
£O U
(,"\)“

A = iR’ (V - 180) where R = the radius of the sphere (1
180
and turned around
v =180 A 4 g0 2)

pR2
Formula (2) can be written
V - 180 = constant - A
or E = constant - A,
where E = excess above 182° of the sum of angles, and the constant is

18

R

(@]

[

The excess angle E is thus proportional to the triangle area. (See
diagram 3.9.12). :

On a sphere, therefore, A
a triangle’s sum of angles is A
uniquely determined by the
area or vice-versa, the area is
determined by the sum of the
angles. In the plane, the sum
of angles is fixed at 18C°,
while the area can vary freely.

Do similar triangles
exist on the sphere (other than
congruent triangles)? In other

2nR?

> V - 180"
0 180 360

words, for a given triangle,
does there exist a smaller or a
larger with the same angles? Figure 3.9.12
The answer which we readiiy R?
see is “no.” The greater the '

tonal o

T~ 1807

IR e (T

o AeafEe Foola

R

S i (=

S S et L
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That the sum of angles in a planc is always 180° is closely related to

the axiom on parallel lines, i.e. with the existence of a unique parallel (b)

to a given line (a) and passing through a specific poins off of the line a
Figure 3.9.13).

b We do not have this

: axiom for the sphere, and

thus the conditions are com-

. pletely different in regard to

the sum of angles in a triangle,

Frgure 3.9.13
G+ i+ y=180"inthe plane.

3.9.3 Distance

We shall now take up
a practical problem: derer-
mining the distance between
two points on the carth.
With the aid of spherical trigonometry the calculation is quite casy:

we would simply use the longitudes and latitudes of the points and plug
their values into a formula. But it would take time to develop trigonome-
try up to the point of the formula which is needed .o We will here use a
method with compass, protractor and straight-edge which provides a
besutitul example of how one with the aid of methods taken from plane
seemetry can master the surface of the sphere. As we wil see, the
method depends upon the simple fact that the circle is a plane curve and
that every plane cutting the sphere does so along a circle.
Let us determine the distance between Stockholm-Arlanda Airport
(long. 18°; lat. 60°) and Buenos Aires (long. -58°; lat. -34°).
To begin with we note that the longitudinal difference between
Stockholm (S) and Buenos Aires (B) is:

18° - (-58°) = 76°;

S lies thus 76 east of B (not, of course, straight east).

We draw a circle C according to Figure 3.9.14 and let it represent
the great cirele throvugh B, the western most of the two Citics.

The horizontal diameter of the circle s

a projection of the cquator,
and at the top we have the North Pole, N

N
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N

L We now imagine replacing half of
fihe globe (the half with Stockholm on
) back over the circle so that the
ENorth Pole coincides with N and
PBucnos Aires with B. Stockholm finds
hiself somewhere in the air above the
paper.
& We shall project Stockholm
Litraight down onto the paper and mark
the point with an S. How do' we do i
bthis? First we draw the horizontal | ' ,,:,g\,:,.(,},.;o,:
fchord corresponding to Stockholm’s & = Buenos Aires. N = The North Pol
circle of latitude, i.c. we project the 60°
crcle of latitude down to the paper —
i in Fi ¢ 3.9.15. -
e k\l)?’nfl:g;::: in axis we rotate half of the latitude circh into the p~larfc"
 of the paper (above the North Pole) and obrain the ha-lf c'nrc.l'elc.) i)‘n :l:\Ct
E move 76° cast from B’s mcridian‘ (the left half of the g clzal cucffcno_ tf, ;he
| ing the protractor at the mid-point of chord k and marking off 76

Figure 3.9.16

Figure 3.9.15 Al=As - Ap =76

C s
We then come to the point S” on ¢, which is Stockholm’s loc.ma})n

on the paper after we have flipped the latitude cu‘.cle down onto the
plane of the paper. If we now rotate the latitude circle back up to 1ts

b east.
s
~ [y
N O\ 7 y\N
S Mk
k
C C.
60‘71
M
- 34° M
. B
B
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. ence times 111.1 km, i.e.,

atlas showing local times, and he pupils may easily be left to themselves

ASSROOM

position on the globe, how will " move pro;ectcd onto the paper? A! 4

noht angles to k.
We therefore draw a line at right angles to k and obtam

'“'Stockholm s poemon (projected onto paper). (Figure 3.9.16) :

We next imagine the shortest route from Stockholm to Buenos
Aires. In reality it is a great circle arc. What we want to know is: how]
many degrees of arc, how large an angle, does this great circle take up il
the center of the globe, at M? On paper its projection would be an ellipse’
arc, but could we possibly rotate the globe so that the route comes to lie}
in'the plane of the paper?

Yes, it can be done. We rotate the globe about the diameter BM
i.e. we use BM as an axis! Stockholm then moves down toward the
paper, and in projection, along that line which goes through S at right’

angles to BM, coming to the new posi

Se tion $” on the great circle C (Figur
3.9.17). :
Finally we measure the angle

v =BMS”

g_

and obtain the angular distance for the?
M shortest route BS. The protractor
shows 113°.

B Since each degree on a great cird
corresponds to 111.1 km, the distance
is 113 - 111.1 km, or approximately: 5
12,600 km.
If both cities have the same longi- ff

tude, the construction is unnecessary. The one city then lies straight § 5
south of the other, i.e. the cities lie on the same meridian and we can
directly calculate the distance. For example, the distance between’]]
Stockholm and Cape Town (18 -34°) is quite simply the latitude differ- 4

Figure 3.9.17

{60 - (-34)) - 111.1 km =~ 10,400 km.

In class, exercises on this theme are somewhat embellished with
flight umes, local times, landing times, ete. The class has available a world

ling the longitudes and latitudes of the cities in question.
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3.9.4 FLxercises

How far is it from Stockholm Arlanda (182 60°) to the poles?
(A great cirele 1s 40,000 km.)
2. How far is it straight east from Cape Town (18°; -34°) to Svdney
(151°; -34°)?
3. Determine with compass and protractor the distance between
a) Stockholm (18°; 59°) and Mexico City (-99°; 19°)
b) Philadelphia (-75°; 40°) and Dar es Salaam (39°; 7°)
4. Calculate the distance from New York (-74°; 41°) to Hanoi
(106°; 21°).
5. A person who is not at the North Pole travels first 1000 km

south, then 1000 km straight east and finally 1000 km north. He is then
back at his starting point. Where on earth is he?

6. How large must the sum of angles in a spherical triangle be for
the triangle’s area to cover 25% of the sphere?
7. The formula for calculation of the area of a spherical cap or a
ring zone on a sphere is
A = 2nRh,
where R is the radius of the sphere and h is the width of the ring zone or

the cap.
What per cent of the earth’s area is taken up by the temperate

zones, whose latitudes vary between 30° and 60° (both above and below

the equator)?

3.10 A Little About Projective Geometry

3101 A Projectioﬁ Problem

In Euclidean gecometry, the lengths of line segments and the size
of angles play a decisive role. To become aware of this we have only to



1SS!I THEMES FROMTHE CLASSROOM

remember a few basic problems and theorems from Euclid’s work, the

Elements:

« Constructing a given angle with compass and straight edge, 1.e.
reproducing an angle

e Constructing a chord of given length through a specified point
within a circle

« Sides opposite equal angles in a triangle are equal;
opposite a larger angle is a larger side

* The Pythagorean Theorem: in a right triangle, the square of the
hypotenusc is equal to the sum of the squares of the sides which
form the right angle (Figure 3.10.1).

There are, however, many

S problems in geometry which do
L . not concern quantities but rather
el e put the stress on relations. We
oot o/ know that if an object casts a
et T shadow, then the shadow, the

% . c L L ' object and the light source stand in
//b < certain relation to one another.
. .
7/
Figure 3.10.1

The shadow picture is dependent
on the contours of the object, on

The Pythagorean theoriem: dotted area =

sum of the shaded areas. ¢ =a’+ b’

the location of the light source,
and on the surface upon.which the
shadow 1s cast.

Since shadow plays a role in
drawing and painting, there even-
tually developed a “theory” of
shadows. Earlier still the need for
drawing objects in perspective had arisen among artists. The first
attempts at this in the 1400’s sometimes appeared rather comical: one can
sce a table with plates drawn such that they seem to be sliding down the
table toward the viewer. People sitting in chairs appear to be half-situng,
half-standing; the seats of the chairs slope steeply forward in the picture.

Many other examples could be presented. Stronger and stronger
was the desire to be able to draw pictures in perspective so that the
objects appeared natural. And from the theory of perspective developed
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projective geometry. In fact, 1t was projecuve geometry which laid the

foundation for the theory of shadows. The name itsclf, projective, comes,

from the Latin word projicere, 10 throw or cast, verbs which we in fact
use concerning shadows: the sun throws (casts) a shadow.

The simplest projections prevail between two plance figures, c.g.
two triangles. Let us pose the following problems:

1. Can a point-source of light and a small equilateral triangle be
positioned so that the triangle’s shadow precisely covers a given larger
triangle with a specified position in the room? '

2. Can one find a plane and a vantage point for the cyc in the

room, where the perspective picture of a given triangle on the planc will
be a specified small cquilateral triangle? L

Figurc 3.10.2 illustrates these
problems (with the desired conditions
fulfilled). What we sce directly in this
figure is that the two problems are the
same from a geometrical point of view.
They can be formulated in the follow-
ing way: A triangle T, is given in 3-
dimensional space. Further, a small

equilateral triangle is given. Can this T,
latter triangle and a point be so posi-
tioned that both triangles become per-
spective in relation to the point,
regardless of T,’s shape? - : ‘

To begin with, we put a large paper triangle (of arbitrary shape) on
the classroom floor and cut out small cquilateral triangles of cardboard.
Some pupils instead cut cquilateral triangular holes in the cardboard. We
now experiment with our eves to see if we can place the little triangle
(cut-out or hole) in front of the cye in such a position that the cut-out
“exactly” covers the triangle on the floor or that the large triangle could
“just barely” be scen through the hole. We have to move around a bit but
finally scem able to find positions in which we succeed. No one doubts
that the problem has a solution. On the other hand, our method could
certainly not be called a proof.

How could we achieve a proof for the positive answer?

Figure 3.10.2
T, = given triangle
T, = cquilateral triangle
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o 2o

We begin to simplify the problem by choosing a special case. Why
not first let the given large triangle on the floor be equilateral, i.e. havels
he same form as the little triangle?
: Now it is easy to devise a construction which proves the answer:
the small triangle can be placed “horizontally” directly above the triangle!
on the floor so that corresponding corners of the two triangles can be’

connected to form a three-sided pyramid. We draw a picture of this rea-
soning and conclude not only that the idea holds water but also that the
little triangle can be as small as we like. The point source of light (the
center of perspective) comes to lie at the pyra- .

mid’s top (Figure 3.10.3).
We return now to the original problcm and

L

the small triangle does not matter, could we
" exchange it for a larger equilateral triangle whose :
sides are just as long as one of the sides of the -
angle on the floor?

“Then it'll be easy! We can put the cqui
lateral triangle right down on the floor with one
of its edges alongside an edge of the floor trian-
gle.” .
Figure 3.10.3 ' We implement this thought-process with

Asimple case: Tyand Ty papep triangles and draw a sketch. But where
shall the lamp be put? It takes a good while in
fact before the class figures this
out. They are apparently locked in
by the thought that there is only
one place where the light can be
put and are surprised that it can be
placed anywhere at all along the
“upper” part of line a in Figure
3.10.4. '

And once again, we return
for a fresh attack on the original
problem. Now there is use for the

are equilateral.

knowledge gained carlier that the

“Elgure 3.10.4 ' small triangle is unimportantn
the first simplitied case

tch of the solution for s simplifted case.

try to find other simplifications. Since the size of ; 4
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Might not the cquilateral
triangle of Figure 5,104 be
traded for a smaller? “Naturally,

Figure 3.10.8
T has been
veduced and
moved parallel
to aself

it can be replaced by a smaller
onc nearer the light.”

“Fow, in that case?”

“We can shift the triangle,
parallel to itself, toward the
light. It will then get smaller but
keep its equilateral shape.”

The problem is solved and
we draw the final figure (Figure
3.10.5).

toward [

3.10.2 Désargues’ Triangles

Gérard Désargues (1593-1662), a. French architect who was acuve
in Paris and Lyon, published a theorem on pcrspccnvc triangles in the
vear 1648, This theorem has come to be one of the foundations of gecom-
etry and plays a decisive role particularly in the theory of perspective.
Désargues wrote a dissertation on perspective. His work was appreciated
by none less than Pascal, who investigated closely related problems.

‘Désargues’ and Pascal’s names have come to be associated with respec-

tively tlu thecorem on perspective triangles and an 1mpoxtant proposition
on hexagrams (6-sided polygons), inscribed in conic sections. Both of
these mathematicians laid important foundation stones in projective
geometry but their contributions were not given any particular attention
by their contemporaries. No trace was 1cft of Désargues’ old publica-
tions, but in the nineteenth century an English mathematician, Arthur
Cayley, succeeded in finding an old transcript of Désargues’ manuscrlpt
Not until then were Désargues’ and Pascal’s methods properly apprect-
ated.

© We shall not go into the structure of projective geometry further
than to acquaint ourscl\ es with Désargues’ triangles and with a few sim-
ple so-called dualities. We can begin directlv from our introductory

study with the paper triangles.
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Figure 3.10.6
Tawo triangles perspective with
respect 10 the point Q.

Figrre 3.10.7

We draw two triangles in perspective positions (Figure 3.10.6).
ABC is perspective with AB'C” (and vice versa)when lines AA’, BB and
CC’ go through a common point, the center of perspective (O).

Problem: Have these triangles any other lines in common than the
three lines through O? Obviously not, if we keep to the figure we have
drawn. But let us consider the triangles as each being formed by three
lines and ask if these lines meet somewhere in space (Figure 3.10.7).

Some pupils answer “yes” immediately, for onc pupil perhaps
based on a fecling, but others can motivate their answers: lines AB and
AB” must (in general) intersect each other, since they lic in a common
plane, the “wall” OAB of a pyramid. For the same reason must BC and
B°C’ intersect, as well as lines AC and A’C” (in general). We have thus
obtained three points of intersection in space, which we will call:

P=ABxAB’

Q=BCxBC’

R=CAxCA’
The class extends the lines and marks the intersections; for some
pupils one or more of the intersections turn out to be off the paper. With
time one becomes better at choosing the lines so that everyvthing stays on

the paper.
How do P, Q and R he? “In a straight line,” someone answers.
“Almost a straight line,” sav others. “Notmine.” “Well, maybe they Jo.”

It cetera.

Figure 3.10.8

Figure 3.10.9
PQR = the intersection of the
planes of the triangles.

We compare cach other’s
figures and find that in those
cases where P, Q and R do not
lic in a line, they at least form a
very long thin triangle.

Can it be that P, Q and R always lie on a line?

We direct out attention to the planes t and t” in which the two tri-
angles lie. The planes t and t” meet at the three points P, Q and R. How
do two planes meet, if they have a point in common? Always along a
straight line! (Figure 3,10.8) .

We have herewith reached the conclusion that P, Q and R lic on a line
and one that particular line which makes up the intersection of the planes t
and © . All that is left to do is to draw a clear figure illustrating this, for
example, as in Figure 3.10.9. “But what about if AB is parallel to AB?”

Let us draw this case! (Figure 3.10.10a). What happens now with I}
Q and R? We can still, in general, construct Q and R. The line QR, or the
so-called Désargues’ line, will still be determined by these two points.

But how does it lie?

Look very carefully! — “It goes parallel to AB and A'B” " (Figure
3.10.10b). '

It is not difficult for us to focus on the triangle planes t and t” and
sec that QR must be parallel to AB. And P? “It doesn’t exist,” some say.
“We could say that P is infinitely far away,” say others.

It is precisely the latter way of looking at things which Désargues,
and later all work in projective geometry, builds upon.

v

2
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The point is that it is our free
option to give every line one point at
infinity, but not two. Were that the
case we would violate the axiom that
two lines have one point of intersec-
tion. We would of course be remov-
ing the unsatisfying exception that
two lines sometimes lack a common
point (intersection) but land instead

A in a new exception: parallel lines
ﬁ'ﬁ'](;; 10.10a would then have two common potnts
ABHAB v at infinity.

0o , The classical

Euclidean line has
infinite extension
in two directions.
The new concept
which projective
geometry intro-
duced was that
every line has one
A > point at infinity in
B addition to the
Figure 3.10.10b finitely distant
d is Désargues’ line Euclidean points.
. o ‘ One then speaks
of t.he projective line. With the addition of the point at infinity, a line closes
on itself: any point X which moves in the one direction of movement along
. the projective line “returns” from the other side with the same direction of
movement at a finite distance, if it passes through the point at infinity, P,
.Con?ﬂdcr, for example, the point of intersection between a line and a rot:to-
ing line as shown in Figure 3.10.11. This continuity aspect was introduced
by the Frenchman Victor Poncelet (1788-1867). '
But back to Désargues’ triangles. If tzo sides of the one triangle are
pn)rnl]cl with two sides (respectively) of the other, what happens to
Désargues’ line? As one casily sees, all three sides in T are then parallel

,h‘ ?hc Forrcsponding sides in T". The triangles then lie in parallel planes
fanid all of the points I, Q and R wiil be points of infinity. (Figure 3.10.12)
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Can one here
spcnk of Désargues’
line? Yes! Analogous to
two parallel lines having
a common point at
infinity, we give parallel
planes a common line at

nfinity.

The question now
is to see whether points
at infinity and lines at
infinity can be fitted in
with the basic axioms

councerning points and D €

lines which form the R

foundation of classical

geometry and which we P €=

do not wish to throw R, A

overboard. Here we Figure 3.10.12

must skip over most of ARNAB,BCIBC.

such a study for reasons
of space. However, 1t turns out that

e two points have one line connecting them;
e two planes have one line of intersection.

We observe that two lines (in space) in general lack a common
point. But if the lines have a common point, then they also have a com-
mon plane, and vice versa,

These basic phenomena let us guess that points and planes form a
dualify in space. In the plane, the dual elements are points and lines:

e two points have one line connecting them (common line)
« two lines have one point of intersection (common point)

A particularly important result of this is that plane geometry may
be built up with complete symmetry: for every configuration of points
and lines, there is a corresponding opposite dual configuration where the

role of the points is taken over by the lines and the role of the lines by

the points.
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Herc follow a few simple cxamples which exhibit such duality:

Three points A, B and C
form corners of a triangle,
if they do not lie in

a straight line (if they lack a
common line).

Figure 3.10.13a,

C

Figure 3.10.13a

A complete quadrangle
(.four-angled polygon) is
formed by 4 points (of which
no 3 form a straight line) and
the 6 connecting lines
determined by the points
(Figure 3.10.14a).

Figure 3.10.14a
Complete gnadrangle

Three lines a, b and ¢

form a three-sided figure,

if thev do not pass through a
single point (if they lack a
commeon point).

Figure 3.10.13b.

Figure 5.10.13b

A complete quadrilateral
(four-sided polvgon) is formed
by 4 lines (of which no 3 pass
through a point) and the 6
points of intersection
determined by the lines
(Figure 3.10.14b).

\

Y

FI‘;:HH' 3. 10./’:’)
Cumplreie gurdrilareral

g many poi
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A circle may be considered tO
be formed by infinitely many

lines (Figure 3.10.1 5b).

o circle may be considered as
ade up of infinitely many
Esoints (Figure 3.10.15a).

[o]
o (o]
o o
©
[e]
[¢]
° o
[}
Ooo

Figure 3.10.15b

Figure 3.10- 15a
A circle can be formed by lines.

Acircle can be formed of pomnts.

n the plane comes out even with the two

The fundamental duality 1
Not only the point, but

basic elements themselves, the point and the line.

Jlso the line may be considered as the basic
' jundamental element. But if we consider the linc as made up of infinitely

nts ( a row of points), then we may by the same roken consider

the point as made up of infinitely many lines, se¢ Figure 3.10.16.

Figure 3. 10.16
The line as a 70w of points and
she point as a bundle of lines.

The functional duality between the row of points and the line bun-

dle shows clearly that

—alinc bundle 1s created when

P —a point-linc is created when
. aline bundle s intersected by 2
line not in the bundle.

the points of 2 point-line are
connected with a point not on}

the line.

},_.

building block, an indivisible }/
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In space, as;
mentioned earlier,

are dual element
of each other.

i

geometry’s dualif
structure was not

discovered untlt
1820’s, but it then!
became the most
important factor ind
further dcvelop-:-

7 /
Figure 3.10.17 ’ ’
Point-row and line-bundle

o ments c
projective geometry a dominant position over earlier ocor::et:i‘;ls’.uh .

Besides perspective and the theory of shndows:.’ applied projectve’

geometry plays a role in photogrammetry (with applications in the tech-
flology for pr.oducing maps via photographs, for example). Its great value'
‘in the scho‘o% is that it gives pupils entirely new aspects of whatboeomet E
1s a]l. :fbo.ut, it allows them to experience considerably more of :eometr?c,x
qualities than the usual quantitative problems, and it for worliD and dis-%
covery to youngsters who do not have, or believe themselves not to have ‘.
ability for‘the equation-solving of analytical geometry. o
think.Partxcct;larl‘\' the dga.lxty exerc‘ises are aimed at developing agility inj

<ing and to mpuld will power into thinking. One learns to see prob-i
lems from opposing directions and gains a much broader concept of "
space than the usual idea of space as a great empty container of pointi.

3.10.3 Exercises

1. We start with tl s i in Fi
ate o . the Désargues figure in Figure 3.10.9 and investi-}
3 \hx tf.x,_r pc;mt O, the center of perspective, may be placed at A
oes the hgure have tw i 1 ‘ ‘ “with’
: o triangles which are pers ive | ith |
: | gles : erspective in spac
respect to A? P space it
The answer is ac 7 J
"he : er is actually yes! Find the i I §
) . s! ¢ triangle and determine t
Jésargues-line. ; e the

=
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2. The same problem as Exercise 1 above but with C as the new
center of perspective.

3. (a) We draw Figure 3.10.9 once again and investgate whether
the figure contains two perspective triangles with the line OBB as the
Désargues-line. Where do the triangles lie and where 1s their center of
perspective?

(b) Show that any one of the 10 points in Figure 3.10.9 can be the cen-
ter of perspective and thatany one of the 10 lines cane be the Désargues-line.

4. In the complete quadrilateral of Figure 3.10.14b we denote the
quadrangle’s corners by A, B, C and D and the other points by E and F
(E:ABxCD,F=BCxDA). _

If the pairs of points (A,C), (B,D) and (E,F) are connected we get
three lines which form a triangle. What triangle would correspond to this
it Figure 3.10.14a?

5. We label four of the points of the dot-circle in Figure 3.10.15a as
A, B, C and D (for example, clockwise). Corresponding to this in Figure
3.10.15b will then be four tangents a, b, cand d in cyclical sequence.
These four clements determine a complete quadrangle and a complete
quadrilateral respectively. Study how these correspond to each other in
the two figures. Among other things, compare the positions of the points
1nd the lines in the triangles which, according to Exercise 4, may be asso-

ciated with the figures.

6. Draw a Désargues-figure with the center of perspecuive
infinitely far off. ‘
7. Draw a Désargues-figure where one of the corners of the trian-

gles is a point at infinity.

3.11 George Boole and Set Theory
3.11.1 A Pioneering Contribution

It is said that Gottfried Wilhelm von Leibniz (1646-1716), one
of mankind’s universal geniuses, read Latin fluently and began to study
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Greek before reaching the age of 12. As a 2C-vear-old he published the
work “De Arte Combinatoria” (On the Art of Combination) which he
later considered “a schoolboy’s essay” but which came to be the starting
point for a new level of abstraction in pure mathematics.

If we hold ourselves to arithmetic and algebra, we can separate out
three levels of abstraction, as far as numbers are concerned:

I. The numbers are drawn or written as pictures, for example the
hieroglyphs of ancient Egypt. The number 9 is indicated by nine pictures
of the symbol which stands for 1, and so on. The degree of concreteness
1s very high here.

2. Numbers are indicated by quite abstract characters, for example,
as in the base-ten system. The symbol 1 for one is concrete, but already
the symbol 2 for two is quite different from the ancient Egvptian or
Roman 1L

The number ten is indicated by a combination of two digits, 1 and
0, and so forth. In position systems, among them our 10-svstem, cach
added digit gives different sized contributions depending on its position
(place) in the number. For example, the first five in 5157 contributes 5000
to the number, the second five contributes 50.

3. Numbers are represented by letters. For example, 2n means any
even number if n is a whole number (an integer). 2n + 1| means any odd
number, a variable x can take on any real value — and so on.

Thanks to representation of numbers by letters it is possible to
carry out proofs in arithmetic as in Section 3.5.

Leibniz lifted arithmetic up to a considerably higher level of
abstraction by letting letters represent intervals on the number line (the
x-axis of real numbers). He developed, as we shall soon sce, the basis for
a kind of interval arithmetic in his work “The Art of Combination.” His
purpose in this was not small: he wished to create “a general method in
which all truths of the reason would be reduced to a kind of calculation.

At the same time this would be a sort of universal language or script, but

infinitely different from all those projected hitherto, for the symbols and
even the words in it would direct the reason...™

The purpose and the wording remind one of Descartes” declaration

7, where

!

of program in a work on geometry and methods from 163

From L. T. Bell, Men of Mathematics
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Descartes saw himseli as laving out “a completely new science, which
 will come to admit a general solution of all such problems as can be put
a5 questions of quantities, continuous or discontinuous, cach in accor-
dance with its own nature... so that almost nothing will be left to dis-
cover in geometry.” (Descartes, “Dissertation on the Method of

Geometry.”)
Following Section XX in one of the fragments of Leibniz’ essay,

which is still in existence, we let A, B C etc. denote intervals on a line and
: the symbol‘GB denote an operation which we can call “addition of inter-
F vals.” A @ B will then denote the interval which contains points from the
interval A or from B or both. We will sav, henceforth, “points from A or

B” (Figure 3.11.1).

A
B . A . B
t —
' AGB Figire 3.11.16

.. A @ Bincludes here both intervals.
Figure 5.11.1a

Leibniz notes such basic rules for interval arithmetic as

| “Axiom 17 B@N=N B (as we sec, the commutati\./e: law for
: the newly introduced addition)
g “Axiom 27 ABA=A (quite “revolutionary” compared with

a+a=2al)

, “Proposition 5” If A'is contained in B and A = C, then C is contained in B.
; . “Proposition 7” A is contained in A.

4 “Proposition 9” If A =B, then A@C=B&C

_“Proposition 10”If A =L and B =M, then A®B = LOM.

Apart from “Axiom 2” we recognize these rules from our own
¥ withmetic and algebra. But let us ask, how can we or should we solve an

¥ interval equation of the type

A®X=A®B

where X is unknown?

Can we simph apply our usual equation-solving procedures and

Cwrite X = B?
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!
The pupils are allowed to think awhile and]
are then welcomed to give examples for or
against. The results are unanimous: we cann
draw the conclusion that X = B, as Figure 3.11
gives witness to.
“Did Leibniz also think of that>” Yes, in 2}

i

‘————————  “scholium” (explanatory note) he asserts tha}

ke

-
-

A X “Proposition 10” cannot be reversed. He alsod

gives other examples of non-reversible theorem

T ; ; ininterval algebra. :
———— Even if “all the truths of reason” do notj

A quite fit into Leibniz’ interval arithmetic, wéf

~ ~ must still honor him for having developed 1 new3
system of calculation, a system in which the sym-j
bols no longer represent numbers but rather§f
intervals or sets of points.

Figure 3.11.2
Here we have
A X=A®B burt X 8

3.11.2 Some Applications

“May we see an example of such interval arithmetic in practice?
Of course! Suppose that 100 people are asked about their knowledge o
French and German: “How many consider that they have tolerable com
mand of these languages, in the event of a trip to France or Germany o
for reading a book?”

Suppose that 35 people considered that they knew French tolerably;
and 75 German. We now ask ourselves: |

a) How many of the 100, as a minimum, are certain to command
both French and German? .
b) How many at most could command both French and German?
¢) How many at most could speak neither language?
d) How many must, as a minimum, have a knowledge of at least
one of the languages? ’

We let F be the set of people who know French, G the group of pe
1¢ who know German. The letter n will denote number, e.g. we will write
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n (G) =75, 0 (F) =35

In order to answer question (a) we must separate G and F as much
as possible; the overlapping part is to be minimized. We work forward to
Figure 3.11.3 and find that

Min n (G and F) = 10

100

-

-y

4
al

. P
G: 75 F:35

- 1o£<—

Figure 3.11.3
Min (G and F) = 10

The number 10 can be obtained
in different ways, e.g. as 35 - 25 or as 75
+ 35 - 100 (the overlapping portion is
left over in this subtraction).

In a similar manner we get the
answers to the other questions:

b) Max n (G and F) = n (F) = 35, when F is included in G.
¢) Max n (neither G nor F) = 25, when F is contained in G,
d) Min n (at least one lang.) = 75, when F is contained in G (Figure 3.11.4).

If we were to formulate similar | 100 )
problems concerning 3 or 4 languages, (G
the difficulties would increase consid- r
: ) e —
crably. And vet abstract combinatorics 3s 25
came to be more and more concrete ~
and manageable for 19th century 75

mathematicians in England. We shall
next turn to the most prominent of
these mathematicians, George Boole.

Figure 3.11.4
by Max n(Gand F)= 35
c) Max n (neither G nor F) = 25
d} Min  n (at least | language) = 75§

3.11.3 Boole (1815-1864)

George Boole can be seen as the most prominent founder of
abstract algebra. He was, like Leibniz, a genius at language (translating
poems by Horatio at 12 vears of age). Besides Latin and Greek. he inter-
ested himself in modern languages such as French, German, and [talian.
Boole, who was more or less self-educated, was employed as a teacher at
age 16 and started his own school in Lincoln, England, at age 20.
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On the recommendation of a mathematician in London. A. de
Morgan, Boole was appointed professor of mathematics at a newly

started college in the town of Cork, Ireland, where he worked unul his .

death in 186+. Boole achieved great success both as a lecturer and as a
mathematician. His best works were an analysis of logic from a mathe-
matical point of view (1847) and in particular “An Investigation of the
Laws of Thought...” with applications in mathematical logic and proba-
bility theory (1854). The importance of his contributions was first recog-
nized by Bertrand Russell (about 1910) who considered Boole’s
Investigation of the Laws of Thought to be the first truly pure mathe-
matics.

When Boole was alive, Leibniz’” essay on combinatorics had likely
been completely forgotten. It seems improbable that Boole could have
known of that work, partly because Leibniz’ basic ideas were not even
given attention in Germany, partly because Boole’s concepts in many
ways differed from Leibniz’. Boole, for example, used “addition” in
another sense, letting a + a remain 2a and interested himself primarily in
his new arithmetic’s applications in logic. He investigated, for example,
how such conjunctions as “both-and,” “either-or,” “if, then” and other
expressions could be given arithmetic analogy. He formulated a number
of axioms for his symbolic logic. We will here look at the set theory
which Boole’s followers, primarily John Venn (1834-1923), came to
develop.

After serving as a clergyman and lecturer, Venn switched over to
mathematics. From him we have the rather well-known Venn or sct-dia-
grams which made set theory considerably more understandable and cas-
ily manageable than interval arithmetic. In 1864 W. S. Jevons (1835-1882)
published the work “Pure Logic, or Qualitative Logic as Distinguished
from Quantitative” and made a clear distinction between the concepts “a
or b is true” (meaning a or b or both are true) and “either a or bis true”
(one or the other is true). Venn accepted and used Jevons’ system. We can
put this in the terminology of set algebra in the following way: we let a
Roman one, I, denote a set of something, for example 1000 people. We let

A denote a subset of 1 (perhaps including the whole set), for example, .

those pcople who read American fiction, and let B be another subset,
those who read British fiction.
We introduce further

. Venn diagrams.

& writes
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A" = the complementary set of A
= the set of people who do not read American literature = all
those among the 1000 who are not members of A

and analogously B,

a5 well as two operations and O

A U B = “the union of A and B”

the set of people who belong to A or B or both:
the set of elements which belong to A or B

A N B = “the intersection of A and B”

the set of elements which belong to A and B

(i.e. to both A and B)

» We can consider the forming of a complement as an operation
which acts upon one set while union and intersection are operations
which affect two sets. Figure 3.11.5 shows the graphical equivalents as

]

Figure 3.11.5
Basic operations

7
'\‘ A Z I’ = total net; A* - the
///// complement of A
A A -
A
O C) AN B = O = empty set
overlap

when A and I do not

If A and B have no common elements, they are said to be separate

¥ or non-overlapping or disjoint. Their intersection then has no elements,
& which is usually expressed: the intersection = “the empty set” and one

AN B=0

Here it is interesting to compare this with a - b =01in arithmetic.

¥ Further examples of ground rules are:
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: . DUA = A ONA=0 AUA =]
! 1 UA=1 INA=A APA =0
4 ST and (A’)': A

Before going one with further development of the system of
axioms we should. as in the classroom, first have a look at a concret
example of calculation with sets in a Venn diagram.

Suppose that the humber of people in sets A and B above are 56
and 780 respectively and that 200 people belong to neither A nor B. Caif
we, from these figures, obtain other information? Can we, for exampl
determine that a certain number of people must have read both America
and British literature, i.e. must belong to the intersection?

We draw a Venn diagram as in Figure 3.11.6. Obviously there ar

1 people in the intersection, in the lens-shaped over
A B lapping area. But how many? There are differen
ways to proceed.

We can let x be the number of people in th
intersection and then add up three separate set
which together make up the union:

Figure 3.11.6
. . #5m(l) = 1000
\( "'n(A) = 560
n(B)=780 . . :
ngm)'i{/)cr/i nor B) = 200 This expression must be equal to 1000 - 200 = 800;

so we get the equation 1340 - x = 800 and x = 540,

(560 - x) + x + (780 - x) that is 1340 - x.

A direct method:

The number of people in the intersection is (560 + 780) - 800 = 540.
The line of thought is that adding 560-and 780 gives a double book-
ing of the intersection amount. There are not so very many problem vari

ations with 2 sets, but 3 sets give more. Of much greater interest
however, is set theory’s structural foundation.

3.11.4 Rules of Arithmetic
With the aid ot Venn diagrams, the class can investigate which rules:
should be included in the foundations of set theory. Which of the follow
g ought to be considered “laws™ in st theory?

GEORGE BOOLE ANDSETTHEORY i199

AuB = BUA
ANB = BNA

commurtatve faws?

]

associative laws?

(AUB)LC = AU(BUA)
{ (ANBYNC = An(BMA)

AN(BUC) = (ANBYU(ANC)  distributive law for intersection?

1 i rmal ari etic if we fition
Corresponding laws ap;.)ly. n Anoxm.xhl arnhm‘uu if we let adc
correspond to union and multiplication to intersection. .
We find that all of these laws must be accepted. The last of them is
illustrated in Figure 3.11.7a-b:

A B A B
Figure 3.11.7a ’z/v,na\:\lé 76
AN{BUC) o c -

Might we expect that there is also a distributive law for union, te.

that the following should apply?
AU(BNC) = (AUBIN(AUC)?
We compare with normal algebra:is 5+ 2+ 8=(5+2) (5+8)?

No! :

We draw Venn diagrams for both the left and the right side of ().
Sece TFigure 3.11.8.

What do we see in the
figures? We sce thatif A, B
and C overlap one another,
then (7) 1s true! 0 L.L

It 1s not difficult to ¢
check that this result applies
completely generally.

It turns out that the

Py
AB
—

94

Ty

UL

1

|/

.l

Figure 3.11.8
Three overlapping sets

AU{BNC) = (ANBIUW(ANC)

operations union and inter- . ‘ . | -
section (W and M) participate entirely symmetrically in thc. system o
axioms. They take on dual roles. For every general relation \vhxch_ls true
there corresponds a dual relation which is obtained f:'o.m the fxlrst by
interchanging w and N everywhere, and interchanging I with @,
while these are dual elements. For example, the relation



"HE QOO M
300! THEMES FROM THE CLASSR
ANA =0

transforms into the true relation
AUA =1 .
1 13 e, in
ise ic dualities are,
M mples are given in the exercises. The bas
More exa are g
ing: and B
summary, the following: Forall Aa )

AuUB = BUA ((Xlab))
{ ANB = BMA 2
e o
[ A 2 ABrAnC) i"j
(Aol { 2%l0 &)
[ pon=l

mple of duality even in an algebra,

. n an exa : > jec-
We have thus come upo duality we found in plane proj

a he
one of 1 more abstract nature thant
tive geometry {Section 3.10).

3.11.5 Some Applications of Set Theory
' i ability and
¢ theory the step is not far to problems n probability
From se

combinatorics. ) o
For example, the basic set

casts of a dice,

.. s o SIN
. aining at least one s
ioht be the subset of putcomes contaiiing least one one, ¢ic.
A mlg}: 1 }‘ ubsct of outcomes containing at i
1 >¢ e sut
B might O

S P .1 (¢S
outcomes with no six
\’ would be the subset of outcomes
R

' . > ith no ones
Then B vould be the subset of outcomes with
’ W s

wing 4
1 could be the outcome qf throwing
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 and A U B = rthe subser of outcomes which contains at le
] or at least one one

AN B = the subset of outcomes which have both onc or mare

sixes and one or more ones.

The number of possible outcomes, clements, in this basic set I is
6' = 1296.

We leave combinatorics and instead ask ourselves how Boole

pther mathematicians went about formulating the outlines of a m
maucal logic.

and
athe-

A, for example, could represent the statement “It is raining”
A’would then mean the opposite of A (not-A):
B could be another statement: “It is warm”

! B would be its opposite: “It is not warm”

- A U Bcorresponds then to: “It is raining or warm”
AN B corresponds to: “It is raining and warm”

“lIt is not raining”

From daily life we

are familiar with logical statements of the type,
fthe animal is a cod,

then it is a fish.” One can illustrate this statement
ing a Venn diagram (Figure 3.1 1.9): we let a C-
cle represent the set of cods and an F-circle the £
rof all fish. The rectangle can represent the set of

animals specics. Since the C-circle lies within
t F-circle, every point in C is also a point in F,

at the C-set is contained in the F-set is usually Figiere 3.11.9
iTen Ca RfC then F~.

CcFE

Reversing “If C. then F” to “If F, then C” is, of course, wrong: if
have a fish, it nced not be a cod. A point in the F-circle need not
g 1o the C-circle.

The illustration of the propositions of the type “If A, then B” with
\-sct inside of a B-set is thus completely natural. Besides the expres-
s OR, AND and IF-THEN, the expressions EITHER-OR and

‘THER-NOR also have their graphical representations (Figure
12

ast one six

-
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o
Ny

Either - or
) Neither - nor

Figure 3.11.10 (overlapping sets)

3.11.6 Logic and Truth

It is interesting to follow the development of the “IF-THEN}

relation i i 1 i
1n presentations of symbolic logic. At one point of time t

implication. “I A h nB” or “Ain 1 B h e
€A is f,llse ,0 Ii\ ‘, rne; l‘ 1 )pllCS ” IO()]\L on the fO”O\Villg fOl'lll(”
d y Or 1S true, and mn IhlS case B iS true.” For e\"lmplc we Cil.‘

N s

xefol“lula-e the tatement Il t]] \ age in XCee 100 VOIl
S 3 ) &4 Olt g 1 [he llne exc dS
the transistor Wl“ bC dCStIO)'Cd .
]
to lead Illt VO tag( in Jl(,’ wire i1s n
more thall ICC 'Olts) or it 1s more than IOO \OItS a“d then tlle transisto
_Wl” be destloyed. O“e can Say more Iaconlka“}. Ihe Vv Oltage n th

“word “or” has h i
ere a broader meaning than the exclusive “either-or

th“.o haS ‘lC[Ua“y bcc” al(l ab()u hc transisto € voltage 1s iess
no 5 S tt sistor ]f th I 5 1 %
thdll loo V()lts, e.g. 99 VO][S. xe h Ve a tende“ Voin Ver \d anguage IO;
C 1 e€ve ay I 1S < o

interpret 100 v x S
! pret 10 f)]ts as the maximum safety limit for the transistor. but th;
1s a generalization. : or, but th

The laconi i implicati
¢ formulation of the implication can be represented by}

the expression
A’V B (not-A or B)

Wh » « 1
ere A stands for “the voltage exceeds 100 volts,” and B stands for “the %

transistor is destroyed” (Figure 3.11.11).
The implication of “If A, then B” which in ser theory’s symbolic

language i i
18 i 3 : :
guag written A © B (A is contained in B), has therefore been 4

replaced by the expression A“V B,
In this versi ict » '
rsion logicians i rmpli

cven Al versior gicians werz‘t. so far trving 1o simplify that they
A /. i .—statc;ments to “imply” true then-statements. In The
) Jathematics (ed. Jan ‘
Alfag b Lt f J_ nes R. Newman), chapter X111, section +

arsxi gives the “implication” o
_ If 2 times 2 is 5, then New York is a laree city”
. el 9 . A‘ N
-anexample of a true statement. ‘

“line does no , i :
t exceed 100 volts, or the transistor will be destroyed.” Thei

, .
B/ /A

1(3)
Figure 3.11.11

A represents “The voltage exceeds 100 V7

B represents *The transistor is destroved”

A represents “The voltage does not exceed 100 V"

B represents *The transistor is not destroyed”

Only the first case can illustrate the statement

“If the voliage cxceeds 100V then the transistor will be destroyed”

The motivation is, bv analogy with the transistor example, that
the statement reformulates to: “Not-P or Q is true,” where P stands for
«7.2=5"and Q is “New York is a large city.”

Even the following statements are considered to be meaningtul:

=5, then New York is a small city”
=4, then New York is a large city”

(

3
o

o o

)l
Y oI

—

Because one of the clauses in the reformulations

isnot5 or New York is a small city”

2.2
y 2+ 2isnot4  or New York is a large city”

(1
(2
is true (the first in (1), the second in (2)), the statements are accepted as
meaningtul. One need not be surprised to hear the following words by
Alfred Tarski (from The World of Mathematics, Ch. XII1, 4, edited by
James R. Newman): “The divergency in the usage of the phrase “if ...,

then ... in ordinary language and mathematical logic has been at the

root of lengthy and even passionate discussions...”

The two facts. that a false clause can imply any arbitrary
clause and that a true clause is implied by any arbitrary clause, are
cometimes referred to as the implication paradoxes. Yet they are not
real “paradoxes.” They express a discrepancy between the concept
of material implication on the one hand and the concepts of condi-
tional refation and consequence relation on the other. The stated dis-
crepancy is remarkable. One can say that it has not been paid
sufficient attention by the classics of modern logic.

(G. H. von Wright in “Logik, filosofi ach Sprak”)
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In the simplified so-called material implication, exemplified above, ‘ In the function table 0
the clauses can, as we have scen, completely lack any meaningful relation. below we establish that (A) """
But the material implication has been an effective tool when its purpose  bove corresponds to all possi-
was to solve problems in logic with rational methods patterned along the ble- situations with two L—e Figwre 311,12
lines of ar{thmeflc. Here tl.vere are many opportunities in a higher class to ' switches in parallel, while (M) )
take up discussion of logic, reality, and language as different modes of B orresponds to two switches in series.
expression, and thereby bridge over into other schooi subjects. -

A particularly meaningful theme is to train the pupils in under- Switch x Switch y Functional value f -
standing the difference between “If ..., then ...” and “If and only if ..., ' . for the lamp
then .....” We ought to be aware of the meaning of necessary conditions, " o 0
sufficient conditions, and conditions which are both necessary and suffi- 0 | 1
cient. We will return to this subject in Section 6.2. See also Section 3.5.3. (A) 0 0 1

The laws which were originally formulated for set theory can : 1 1
strangely enough be used in such divergent areas as logic, probability,
and the theory of electric circuits. The algebra which presides over these 0 0 0
arcas was given the name Boolean Algebra. ™M) ¢ 1 0

! ! L \%

These tables are
¥ illustrated in Figure

X
e
I @
We shall conclude the chapter by looking at a few examples which 31113 r - B
e

3.11.7 Switching Networks

1 i ied i ; ireui Y ow step
give a hint as to how Boolean algebra can be applicd in switch circuits. We can n F

1 i struc-
In the theory of switch networks there exist only two values, 0 and by step test the st

, . . . .. ) T . SW1 ing net- ¢ -
1. We define two operations, “addition” and “multiplication” with the g e of switching i - -
tables . wor%( theory 1in P -
. relation to set algebra ' ‘ e . |

0+0=0 0-0=0 P (we take only a few
O+1=1 0-1=0 & steps here): . . ’,
(A) 1+0=1 (M) 1-0=0 ] For a switch < et me”
1+1=1 1-1=1 § valuc x, there corre- r -~ N
) § sponds the opposite  l—o o -
The only unusual thing, as we svce, i5 that t+1=1. switch value x” such ,
that ol - _
. - . . ¥ - g
The value 0 is applied to an open switch or 2 non-glawing lamp. 3 <=1 istrue whenever [‘ — Ny - *}
(Figure 3.11.12), ) ¥ -0 and N . -

Summarizing, we can say that 0 corresponds to an open circuit and =0 is true whenever Swcitches i parallel Switches in series
7 = - ~
| corresponds to a closed circuit. ; . Figure 5.11.13
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We note that

“ X+ x" =1 (always)
‘ (x :)x =0 (always)
oy ) X) =x e
! See Figure 3.11.14. (always)
x
N .

\l/
/N

Figure 3.11.14

Xx+x'=1 andx-x'=0ve Z
X x'=0respectively. Hustrated here for the case x = 0

Ler us now ask: do the following laws hold:

(N X+y=y+x ?
.\'-y=y~>x ?
(2) (x+y)+z:x+(_\'+z) 2
(x-y)-z:x~(_\"~z) 2
Y - (3) :+(y z)=(x+v): (x+2) 2
b (y+z)=(x-_v)+(x-z) ?

It is easy to verify (1) and (2). That faws (3)

one of the exercises below. e h‘-’_]d « taken vpin

In this wav or i
vay one can discover that the axioms of Boole

have thei
e s W \ _ an algebra
alogous counterparts in the theory of clectrical cir ;

cuits.

3.11.8 Exercises

e .l. fn a c]ass.of 30 there were 25 who we

1any and 21 toward France as the country
a) Determine the m .

favor of both countries.

‘ ) I (6] < R ¢ ay 3
l) l W many ata ma mmum ou (1 l) 1821 Y 1 ] ries?
‘ . > 1 X , € } S Ay S
) 4 St 1 countrig
C I .{()“ ]”‘“1‘1 at ](..l)t, must bk. n f.l\ Of Ui l)

re positive toward
to visit on a school tri
: M1 A s trip.
axi

mum number of students who could be in-

oth countries?

hEol

EXERCISES 2D

2. In an epinion survey the people polied were asked amonyg other

things (o answer yes of no to questions of the type: ™ Do vou have contr
dence in politictan A?7 80% showed confidence in A, 70% i B, and
60% in C, when the questions were asked scpnr;nc!y one at a ume. What
per cent of the people asked, as a minimum, must then have confidence

in all three of the politicians?

3. Draw two Venn diagrams with two overlapping subsets A and
B. Show A’ U B’ in the diagram and (A N BY’ in the other. Are these two
sets identical?

Invesuigate
ping sets and when A is wholly contained in B.

if this result holds even when A and B are non-overlap-

4. The same as Exercise 3 but with the sets A'D B and (A WB)".

5. Exercise 3 and 4 illustrate de Morgan’s laws:

. (AUB)Y A'AB’
and (AmB)’ = A’UB’

Show that these two identities are each other’s duals (refer 1o
Section 3.11.4).
6. Verify with theaid ofanx -y -2 table the identities
x+(y-z)=(x+y) (x +2)
and x~(_\'+7,)=(.\'-y)+(x~z)
(the distributive law for the operations + and - respectively, in switch circuits’.
7. Show with the help of a function table that the switch circuit in

figure (a) below is equivalent to the the simpler circuit in figure (b), thar

is. show that f = ¢,

y Y

___.o——-®-f— L""—@;

Figure b

Figure ¢
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3.12 Exercises in Concept Formation

3.12.1 From Galileo to Riemann

From Galileo’s study of little balls rolling down the inclined plane,
a red thread leads forward to our time and technology with moon land-
ings, satellites and missiles. This thread goes via the method of calcula-
‘tion which Newton and Leibniz separately developed concerning
derivatives.

Galileo wished to determine how far a ball rolls down a plane dur-
ing a specified given time. In order to arrange the experiment methodi-
cally he began with an assumption about the ball’s velocity in motion
down the plane: that the velocity is proportional to the time. From this
assumption Galileo succeeded in calculating the distance rolled. He could
then arrange his experiments such that they gave him information con-
cernming the correctness of his theory. He found complete confirmation
that his intuition had been right.

Newrton turned Galileo’s approach around. At that time, thanks to
Galileo, the rolling ball’s distance was well known. Newton posed the
reverse problem: how can we calculate the instantaneous velocity of the
ball, if we know the rolling distance as a function of time?

Out of this question Newton formed the concept which nowadays

is called the derivative and which is the mathematica) tool for calculation
of instantancous velocity, among other things. This work was one of
many famous achievements made by Newton at the age of 22-23 while
~Cambridge University was closed in 1665-66 due to the plague. Itis an
exceptionally important exercise in thinking to start from the well-
known concept of average speed and think through the thoughts which
lead up to the notion of instantaneous velocity, and more generally, to
the derivative of a function, i.e. to the rate of change of a function.

From several simple examples (taken out of train timetables, dia-
grams, the U-expression for the ball’s rolling distance, etc.) we soon arrive

at the formuia
f{b) - f{a) for the average velocity of a function in an
b interval a € v < h

ENVRCISESIN CONCEPT FORMATION 1209

1
= a2 we need to make B

To get at the instantancous velocity at x = e
variable and let b both decrease toward a and increase toward a. e
interesting thing 1s that we cannot simply put b = a in the expression

above. We would then get :

f(a) - ) _ 0
a-a

which doesn’t tell us anything,

o

We must carry out the passage to the limit b— a and investigate

what happens to the quotient

f(b) - f(a)
b-a

It turns out that thanks to our knowledge of a]gcbraic? {'ulcs for fac-
toring expressions, squaring and so on, we can derive a limmn.g Zalucl for
the quotient above, as b goes toward a. (I mus.t-lcavc. out this deve op;
ment and refer those readers who are not familiar with the concept o

\/,

derivatives to a high school text.) ‘ o
It is very interesting from a theory of knowledge point of view,

that with the derived limiting value we are able to define whaf we xtnc:;n

by instantancous velocity, a notion that we managed to grasp intuitively
re now.

ore blcxlfakcs considerable time and requires much careful work before a

heterogeneous class of 17-18 vear old pupils can feel they haw': mast}c:rcd

the concept of derivative. It is interesting for th.em to experience hoxl‘;

simple the actual arithmetic is in problem applications, compared with a

the effort required to develop the concept.

3.12.2 Galileo

Let us return to Galileo and ask: how did Galileo c%lculate the
rolling distances theoretically, before he went to expcnmfnt? AHe
assumed — at least after a certain amount of “playing argux}d — tha
the velocity of a bail which starts from rest and begins rolling down

d

plane is proportional to the time, 1.c. that



-imagine the |i i i J i i :
mag ¢ linearly increasing speed approximated by a staircase func-

ot ‘a number.of products- (Figure 3.12 3)
23 e 3.12.3),
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v=k. where v = veloeity
k = a constant
and t = ume from start

S

. How would he now calculate the accumulated distance rolled?
.Gal.nleo began by assuming uniform motion, i.c. motion where the veloc'r
II¥ 1 constant, say vo. For this case the distance is of course s = v.t, that'
15, simply the product of velocity and time. -

- In a plot of velocity as a function of 2
ume (Figure 3.12.1), the identity v = v. 15 2%
straight line parallel with the t-axis. The’
value of the distance uptoatimet=tis
vot,. In the plot this value corresponds to
the area of the shaded rectangle. For uni-
fqrm motion then, the accumulated distance 4
Is proportional to the area of the corre- i
sponding rectangle in the v-t-plot. ‘

Galileo assumed now that an analo-
gous relation holds even for the case where a
v = kt, L.e. he assumed that the distance is 4
proportional to a triangular areca (Figure
3.12.2) enclosed by the lines v = kr, [; t
and the t-axis.

<

N
7

Ve

J:'

0
Flg.‘t)'c 3.12.1

1

¢ This area is casily calculated to be:
Figare 3.12.2 : : A = k[l s
2
or R
A = Kti

.Thc distance rolled should thus be proportional to the square of
the time, w.hich Galileo, as we know, confirmed through his expc(r]imems :
\V;}s it audacious of Galileo to assume that the area calcula'ior; o
would give correct results even for accelerated motion? Hardly. \Y/e.can g

tion, w relocity | ases | i i
or . Ihcrc_l \LI‘OL‘III\,' increases in small jumps and is constant during the
sub-intervals ¢ Vi i i
10-1ntervals of time. With such a velocity the distance would be the sum
C
‘ ro : and 1 s not-hard 1o imagine
ing toward'the limiting velocity funection :

v = ke
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in such a wav that one lets the length of
the sub-intervals of Gme go toward zero.
The staircase function then approaches the
straight line v = kt everywhere, and the

sum of the sub-arcas nears, as closely as

we like, the triangle’s area

Figsre 3.12.3

3.12.3 The Riemann Integral

Ought not this method of approximation with a staircase function
work with other velocity functions than the lincar? If the answer is ves,
we would command a method of calculating distances for any given
velocity function. '

What must we require of the veloc-
ity function, when it is more “difficule”
than a linear function? We note the
requirement “positive continuous func-
tion,” which primarily means that the
velocity curve must be in one unbroken
piece.

The graphical picture might then 0
look as shown in Figure 3.12.4, wherc an
approximating staircase function s drawn
in under the curve. In order to do the
approximation more accurately, we also
draw in a staircase function with oversized

>

hv = {(t)

AN
RN

NN

3 t

Figure 3.12.4

values (Figure 3.12.50,

We can now begin to develop the
integral which Bernhard Riemann (1826-
66) gave form to in a dissertation the vear
1850 (at the age of 24!)..

To begin with we sub {dgi’bg\\
interval a € t £ b, over whichf éﬂn/c?xo\;"//(){ ;

. . . . Sy,
f(t) is continuous, into.n sub—qnt%rﬁvals
R
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At Aty Ats, ..., Aty where

Aty, =t -2, Ata=tr-ty, ..., Aty = b-ta1.

We denote this subdivision as A.

According to a well-known thcorem of analyvsis, and intuitively
understandable to the pupils, a continuous function always has a largest
value and a smallest value on a closed interval. We can therefore in:ro-

duce the nomenclature

M, = max {(t) on the sub-interval Ag,
m, = min f(t) on the sub-interval At

We imagine now that f (t) represents a velocity function. The dis-
rance during the time interval t, can then be approximated by

(too large a value)
(too small a value).

the product M Ay,
and by the product m,Ar,

The accumulated distance for the whole time interval a <t <b can
then be approximated by the slightly high upper sum

Sy = M,At, + MyAt, + ... + M, At, and by the slightly

lower sum sy = MAL + MAL + ...+ m AL,

The question is now how dependent these values are on the partic-
ular subdivision of the interval, and what happens to them if we let the
length of the sub-intervals approach zero. These two questions arc inter-
woven with each other, as we shall see. We shall investigate them step by
step and come to the concept of the Riemann integral.

1. What happens to the upper and lower sums if one adds subdi-
viding points and thus gets more but smaller intervals?
Answer: The upper sum cannot increase, but may decrease;
the lower sum cannot decrease, but may increase.

2. Canany lower sum be larger than any upper sum?
Intuitively the answer is easy: no.
There is an elegant proof of this (given by the Frenchman G.
- - E‘ 14

Darboux i the 18807s):
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We are to prove that if Aland B are two arbitrarily chosen subdivi- !

sions of the interval, then

s, < Sy &y
. 3 2 A i “ 1 Y :A 4
In order to prove this we let C be . RN
the subdivision of the interval which the Fignre 3.12.6

Marks pointing upward: A
Marks pointing downward: B
All marks: C

A-points and the B-points together create
(Figure 3.12.6). Then, by the conclusion of
step 1. above, '

SS(_; SSC SSB

from which s, < Sg.

(The incquality s €S we have understood carlier.)

3. From (1) it follows that the set of all values given by lower sums

lies to the left, on the real number axis, of the sct of all values given b_v.
n now is: have these two sets of numbers a com—\y/

.

upper sums. The questio i
er limit for the uppe¢

mon limit (upper limit for the lower sums, low
sums) or are they separated by an interval? (Figure 3.12.7).

or

RN 172727777 8000 \\\\\\\\ I 77 VI I 77 S
N o ., ¥
s S

Figure 3.12.7

—~ T

s-valucs S-values

4. Darboux’ version of the Ricmann integral now is: If both value
sets have a common limit, we define that number as the integral of f (1)
on the interval a € t £ b and denote it by
b
f(1) dt
s

If the scts arc separated by an interval, the function t (t) 1s said to be

non-integrable on the intervala st <b.
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e;;istes;e\f? [s}’ha!l now check whether the continuity of f (t) insures th

1ce e integral. Do the lower sums and upper sums have a com

_ mo? InTnt? It is sufficient to show that the difference S-s C'l;l b d
varbntrar’_l)’ small, if the interval subdivision is made tiner and t : e i
the sub-interval length goes toward 0. R 35'{

We get
S'SZ(Ml"nh) 'Aly+(Mz-n]:)-~§[:+_._.4_(_\im_n])_A[ (

We mu : ]
el d?;fhcrc rcc;;l a theorem (on so-called uniform continuity
th crences M, - m, can b 3 : itrarily §

L can be made smaller than arb ;

chat ‘ ' & an an arbitrarily &
o umber X, by insuring that all A t, are shorter in length than a suf :
1ciently small number §.

Then this holds true:

S-s<3 (At + At +. .. +A) =3 (b-a)

JSnce z can b RN « v
¢ ChOSCn ar ar - '
; I bltt‘.l llv Sma“, b s ¢an bc 8] \dC 294 bltl alllV
. ’ i

6. One i
ion Y of the' results of step 5 is the extremely important conclu-
o that ¢ Srcasonmg there holds independent of how the interval sub-
; i . .

v done; the only thing that matters is that the length of the

sub-intervals approaches zero. S
The va i
wpper o lue of the integral, as a common limit for the lower and
S . ‘. . ‘

P f;s max At‘f approaches zero, is thus independent of how the

quence of finer and finer subdivisions is made.

7. I f i
derermi (:)() C:angcs sign, one analyzes separately these sub-intervals
} y.the zero points. The construction may then be carried
through as before. ‘

We nov he i i '
how e v klnoxlv t}:ia: the integral of a continuous function exists, but

: ¢ calculated? We have little ' 1 ’

2 use for knowing of its exi '

we cannot calculate its value! i eristenced

This situation i ical 1 A
with s ;}latxon is rather t‘v;?xcal i the area of mathematics dealing
e ~I. Irst comes proof of existence (“the limit exists”) and after
hat ¢ ‘; aung its value. (In the derivation of the derivative these

fo » . - . . . 9 ‘ .

Qccurrec s:multantousl_\'. the existence of the limit value was shown

ong with its calculation.)

215
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3124 How the Riemann [ntegrel is Caleslated

We study the function

I(x) = { f(t)de

a

foragsx<hb

and ask ourselves: docs the derivative of this function exist? To nvesa-
gate this we form the difference quotient (from our knowledge of the

definition of the derivative):
vsh £ X
11001 f()de - | f(0)de
h h Ja ( )L Sa

From the construction of the integral, it follows dircctly that the
differcnce on the right hand side is equal to the integral over the interval
x €t <x+ h,and we get

“oh
Al Lx+h)-T(x) l} O

h h N

Let m, and M, denote the minimum f (1) and maximum f (t) over

the interval x <t < x + h. Then the following inequalities hold:

1—'m|.'hSQ—I—SL-M|“h

h h  h
that is mp < éh[ < My

Now when h =0, both m, and M, approach the value f (x), since

f (x) is assumed to be continuous. [
We therefore let h go toward zero and find that the limit of Al_
1

exists and is equal to f (x).
In other words: the function'1 (x) has a derivative (and thereby s

also continuous): « \
I’ (x) = f(x) or 4 l f () diy=1(x) ] (3)
dx |, f |

' Right-derivative or left-derivative at the endpoints x =a and s = b respectively.
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A beautiful relation between integral and derivative!
But still we do not know how to calculate an integral!
Assume that we have found a function F (x) such that its derivative
is f (x):
F (x)=f(x)

x>

Example: If f(x) = x? we can note that F (x) = ER

We call F (x) a primitive function of f (x) (a source function for f (x)
in the sense that f (x) is the derivative of F (x)).

We then are in the situation that our function F (x) and the integral
I (x) both are primitive functions of f (x); both have the same derivative, f
(x). Here we refer to “The Fundamental Theorem of Integrals,” shich

savs that
1 (x)=F (x) then I{x) = F (x) + a constant.

Popularly interpreted: if two trains, the one following the other,
alwavs keep the same speed, then the distance between them remains

constant.
According to this theorem we have

1(x)=F (x)+ C (C = constant)

E

x=b gives us Ib)=} f()di=F(b)+C ()

f(t) de=0=F @)+ C (5)

Xx=a gives us

a
Subtracting (4) minus (5) now gives us
b
f (f) dt=F (b) - F (a)
i a
and we have found the formula for calculating an integrai.
If we continue with our carlier example, f (x) = 37, and leta and b
be 1 and 4 respectively, we get

;
vedy = F ) - Fdly o where  F(x) = X

W

- continuous functions also a deriva-
- tive? Are there functions which are
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L =2, j}'

The value of the integral becames

3.12.5 So Much “Theory™?

Are not sections 3.12.3 and 3.12.4 an overambitious load on the

- students? If one knows the class and makes this judgment, then one

might let construction of the Riemann integral be a voluntary chosen
extra work project. But isn’t it so “beautiful” that it is worth the time
required?> And doesn’t it give valuable exercise, both in abstraction and
ability to hold several trains of thought together?

The calculation F (b) - F (a) does not requirc any particular thought
when simpler functions arc concerned. The calculation becomes a routine
procedure. Here, as in the section on derivatives, the formula is very sim-

 pleto use compared with the thought behind it. Y

3.12.6 A Word about Karl Weicrstrass

We have scen that !l functions which are continuous on a closed

- interval are mntegrable.

What about derivatives: have all A

continuous on an interval a < x < b
but which somewhere lack a deriva-
tive? {

We only have to look at Figure H
3.12.8 to see the plot of a function Xy xg Xy X

- ama g amn o —
- oo

o e

R
e x

F which is continuous but lacks a : Figure 3.12.8

derivative at four places, at the points ‘)’
Xp X, X5 and x,.

Can a continuous function lack a derivative everywhere? It seems
i be completely impossible. It therefore aroused enormous surprise
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\thn Karl Weierstrass (1815-1897) presented a continuous function’
\4 which does not have a derivative for any value of the variable. ;
' The curve of such a fumuon Luks a tangent eve rvwhcxe, Le. at

£

f(x) = sin3x 4 sin 9N 4 sin 27x
2 4 8

After Weierstrass other mathematicians have contributed nes
examples of continuous functions which evervwhere lack derivative.

Weierstrass” results are a good example of how mathematics some
times shows that “the impossible might be possible.”

As another example of this, one can study the research results o
Georg Cantor (1845-1918), who showed that there exist many differen
degrees of “infinitely many.” ‘

3.12.7 A Little on Georg Cantor’s Research

Georg Cantor was a pioneer who developed set theory in the true
sense of the term. What we today even in grade school call “set theory”;
(as part of the ‘new math’) is by and large complatclv apart from the area
in which the real problems in set theory have their beginnings. In the ’.
school’s “set theory” one speaks namely about problcmsyinvolvingfim'teL "
sets. Cantor took on the study of infinite sets.

One of his very first qucsnom was: are there greater, “bigger” infini-
ties than the infinity we associate with the natural numbers 1, 2,3 ...?

Let us call this set N and the set of all integers (N plus zero plus the
ncgntivc imcgers) H. Is H a larger set than N? Cantor introduced al
notion of size which meant that two sets A and B (containing elements a’
and b respectively) are equally large (equivaient in size) if the a- and b-
clements can be put together in pairs, cither finitely or infinitely in num:
ber For example. the set of 6 oranges is equaily large as the set of

pples. (It is such examiples, amonyg other things, which some school chil
@ren are put to work on at a much o0 varlyv age)
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And now returning to our queston: are N and H cqually large? It
is quite clear that the set N is <.onm1ngd in H. We mwht perhaps say that
it makes up about “half the amount.” But maybe the N-elements can be
put into pairs with t‘u numbers in H. For cxamplc the set of all numbers
counting by “tens”, 10, 20, 30, ... is cquwalcnt in size to N, in spite of
the fact that the terms make up only a fraction of N: we can namely form

the following scries of pairs, which runs through both scts equally

quickly:
1 -10
2-20
3-30
cte.

Two infinite sets can thus be cqua]lv large or equivalent even
though the one is apart of the other. Here it is possible that the parts are
as large (in the Cantor sense) as the whole.

Now , can the integers of H be put into pairs with the natural num-
bers? Yes, we can construct the following table:

H N
o] 1
| 2
-1 3
2 4
-2 5
3 6
3 7
etc.
H is therefore not greater in size than the y
set N; H and N are cquivalent. We say that H is . .3/\ « oo
countable — forming pairs with the numbers of e o 024 o 4
N is actually counting,. _E_i_il < .
Is the set of all corner points (latrice = 1] 1 2 3>x
points) in an xy-coordinate system countable? : : ;.2 : : :
(Figure 3.12.9) Here we have an infinite number e o« 73 ...

of horizontal lines and cach conrains infinitely

many points. Is this set countable? Figure 3.12.9
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Figure 3.12.10

[ of points betw
establish that any
size as 1! Take for exa

poi
can in this man

ROMTHE CL/\SSROOM

{ound: we begin at the
points in an end-
10). Each latuice

The answer is easily
origin (point i) and aumber the
less spiral outward (Figure 3.12
point will get counted exactly once:

w that the lattice points can be numbered sO

us no

their set1s equivalent 10 N.
Cantor went on to ask: can all the aumbers

between 0 and ! be numbcrcd, i.e. arc¢ they
countable? They can be illustrated by the interval
cen Oand 1 00 the x-axis. By wa¥ of introduction W¢ can
sub-interval of 1, however small, must have the same
mple, 2 fifth of the interval and place this one fifth-
1, as shown in Figure 3.12.11. Each )
“on 17 We sec (hat the points en ’
s on 1. Their equiva-
perween 1 and

interval 1 perspccdvely opposite

nt xonlhasa perspcctive point X
ner be linked in pairs with the point

(hen a consequence of the pcrspcctivcncss

lence 10 $I1Z¢ 1s
" relative 1O the center A (Figure 3.12.12).
A

A

0 i 1
Figure 31211

Figlcfc' 317 12

s countab\e?
on a trial basis, that I's numbers ar¢

s could be written down on an
rs berween O and

en Oand 1 must
nOand 1 can be

But now to l:are its point
Let us with Cantor assume,
This means that the number
which would contain all the numbe
1. Then, during the list's “pr'mtout,” every number betwe
ome out on the list. The aumbers betwee

| fractions of the type

countable.
infinitely long list,

sooner or later €

expressed as decima
0.abcd. ..

tand for digits. 1n order to avoid double sccouming vt

N2t decimal fracuons such as

where the letters §
agree t

Feactional pumbers we

EXERCISES
INCONCEPT FORMATION {221

v.."’(’)))))... A\ hClC a” dCCllllJ.IS a‘[cl a certain PlaCL are nines
(
)

- will be wrt .
3 fireen as 11 p M .
. R S rmmp]c compl
. e 1 gy .
| zeros.in our cxample p eted fractions with infinitely man
. < )I

0.34700000...

Ihls 1 C“t”el§ COIICC[, since 0'9 ; ; g"~ “lUStvbc asst [l(d the "aluc l'
g

; Letusn

A Oow assume fo

' of the list look + for example, that th i

i R ok as follows: e numbers in the beginni

: : ¢
ginning

L

: number no. 1 0.3

number no. 2 0.25649225“.

number no. 3 0‘0?2;;;:80”
. 21...

number no. 4
ete. 0.77389285...

" Cantor
] h now show
eral), which cannot (:“ : -tha't we can form a new number x
possibly be included in the endle .1‘(01- even sev-
ss list which h
as

bCCn ‘;:i\'cn us a .

peEnl 2 and which clai

: - aims to contal

i. He forms, for example, ain all the numbers between 0 and

| x=0.4137...
ccording to the following principle:
he 1st decimal in x .
in x fha]l be different from the Ist decimal
im
in the 1st number of the list (here 3)a

is:aI}: be different from the 2nd decimal
the 2nd number in the list { 0 above) |

must differ from the
' 3rd decimal 1
3rd number 1in the list (5 in our lisl:) e

L ) )
he 2nd decimal in x

e drd decimal in x

d so on.

We can choo .
se the first four deci
ecimals to be, fo
, for example, 4, 1, 3

(i /. Ill continuin []l lltll (lc(:l]lla ()’ 1S tO ‘)e (l]i‘exe b ‘[()u] ]l](_‘ x]]ll
1 g l X n

kimal 1
. 1al in the nth number in the list

Number | .
. Number2 0. 9 2 2 5
‘ Number 3 o. 7 1 8§ 9. )
Number 4 o, 7 6 7 1 . *
9 2 8 5.



"7 ent from the number 0.124000000... in the list but actually have the same

‘opposition from authorities in the field eventually broke Cantor, and he
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Through this Cantor insures that x cannot possibly be the same as |
1nfv number in the list. To be on the safe side we must avoid giving x an
_infinite row of nines (if this were the case an x would appear to be differ- §

value as that number, and thus x would be included in the list). Avoiding
an infinite row of nines is no problem since for each decimal position we
‘have 8 other digits than 9 from which to choose. "
' Thc -.1'.ssgn?ption that all the numbers between 0 and 1 could be {
l§sted inan infinitely long list leads therefore to the contradiction that the !
list would not include all the numbers. This contradiction shows that the |
set of numbers from O to 1 is not countable. This set is “larger” than the ']
set N. C;}lltor-callcd this greater size the continuum. h
‘ Thhls result concerning the real numbers was one of Cantor’s first :
dlscqvencs. In an impressively energetic and persevering manner Cantor 3
continued his journey of discovery through the realmbof infinity. The
work required much mental energy and alertness and took its toll on ]
Cantor’s health. On top of this his methods reccived strong criticism ;
_from some mathematicians. The strenuous intellectual work as well as

was obliged to seek help at a mental hospital on several occasions.

| When it was later shown, not least through Bertrand Russell’s 3
work, that set theory, as it had developed, led to paradoxes of a difficult
nature, efforts were aimed at introducing greater stringency into the cén»
cept_oi" set. Cantor’s contributions maintained theirbgrcz.lt importance,
and It Is no exaggeration to see him as one of the boldest and most pio-
neering of all mathematicians.

3.12.8 Exercises

X . What average velocity does the Intercity train “Tiziano” have
”ctwecn.Hamburg (departure 7.45) and Hannover (arrival 9.08)? The
distance is 178 km.

] f; With what avcmgc rate, expressed in volts/milliampére (V/mA),
oes the voltage in the diagram below increase, as the current increases
from 1.1 mA to 5.5 mA?
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3. A ball starts from rest
and rolls down a planc. The
slope of the plane is such that
the function for the distance
rolled 1s

s(t) = 1.6t

where t is measured in seconds
and s in meters. Calculate the
ball’s average speed during the
time fromt=2tot=4"-5. 0

) -
» mA

4. Toward what limit does Exercise 2

the expression

go, as h goes toward zero?
First rewrite the numerator, and then show that the h in the

denominator can be factored out and the fraction reduced.

5. The result in Exercise 4 is the hmit of the average velocity dur-
ing the time interval from t to t + h, for motion whose distance as a func-

tion of tis t%.
More generally: the result of Exercise 4'is called the derivative of

the function t. Try te derive in an analogous manner the derivative of the
functions t* and t* respectively, and generally of the function t*, where n
is a natural number.
Show that if f (x) is continuous on an interval a Sx < b and
b v
f (x)dx =0,

S

then it must be true that f (x) =0, i.¢. , { (x) = O for all values of x.

7. Calculate
a) i
(x - x%) d»

S0



e

2HITHEMESFROMTHEF CLASSROONM

1+
—

Figure 3.12.13

— o wm e

Figure 3.12.14

. b) the area in the xy-coordinate sys-
tem (with 1 cm scale units) bounded by the
x-axis, the parabola v = x* and the line x = 3
(Figure 3.12.13)

8. Show that the set of square num-
bers,

1,4,9,16, ...

is equivalent in size with the set of narural
numbers.

9. Show that the set of rational num-
bers a / b between 0 and 1 1s countable, 1.e.
has the same size as the set of natural num-
bers.

10. Figure 3.12.14 shows the start of
an endlessly dividing “street network.”
Each road divides into two roads. Show
that the infinite set of separate roads con-
tained in this network is not countable.
{None of the roads cross one another.)

wor

behind school desks. Bur the pupils’ relation to m
- be just as strongly individu
~the subject, and there are others who find it painful. Quite apart from

- their attitude toward mathematic

. comment when they

" something, or even more so, when they

4

MATHEMATICS AS A FIELD OF

PRACTICE FOR THINKING

4.1 To Achicve Sureness in Thinking

ants in mathematics courses for adults have sometimes said
such things as “Mathemarics can actually be interesting,” “I was afraid 1
wouldn't be able to keep up in mathematics,” “I can’t remember that we
ked with this kind of arithmetic in school,” or “Mathematics was

Particip

boring in school.”

Perhaps teaching s cansiderably better nowadays than when we sat

athematics is certain to
al now as then. There are students who like

s many students make an interesting
have just conquered a difficulty in the subject, small

or large: “It was really difficult undl I understood it, but then it was

nothing!”
Later we
problems arc difficult until one understands them,
we direct our attention to another phenomenon which teachers may find
cir pupils: their joy when they have understood
g have discovered something and
best of all, when they have discovered something all on their own.
It is important to give the pupils free space in which they can think
on their own. Some pupils gain a very strong motivation to work, when

they just once solve a problem without help. “Don’t tell us,” “wait a
help” and other such expressions bear
ish to test their own abilities in

will go into the psychological aspects of the fact that

in virtually all of th

minute,” “no, | don’t want any
witness to the fact that many students &
mathematics (just as in other subjects)

but for the moment .

rs
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~ Thisisnota question of achievement-oriented pupils, super-ambi-
uous types, but rather of completely ordinary children and vouth who
_=Want to keep watch over their own inner workings.

classroom but which I would place highest of all, is the feeling of sure-
ness, when one has attentively, conscrously solved a problcm.bSurencss
comes the moment we see that the method we have chosen will lead to
thF goal. It is not dependent on those calculations or manipulations we
m‘lght need to do in order to get the answer. It is based on the experience
of having found a way to reach the goal and of knowing that one can fol-
low a thought process just as surelv as one can walk doxt;'n a road.

There are some interesting observations on how the experience of
sureness can come to be present just as suddenly as when lightnine
strikes. In The World of Mathemaiics (edited b\'jaxx{cs R. Ne\vnl;], NC\:
York 1956) we may read personal dcscriptions' of this expericence by the

French mathematician Henri Poincaré (1854-1912). Poincaré had wrestled

lw;th the problems in the theory of functions for a time while in Caen, but
oft town ‘ C oy T . ..
‘ ‘and mathematical work to participate in a geological expedition:

. The changes of travel made me forget my mathematical work.
Having reached Coutances, we entered an omnibus to go some place
or other. At the moment when | put my foot on the step, ‘the idea
came to me, without anything in my -former thoughts seeming to
hav.c paved the way for it, that the transformations 1 had used to
dcfn?e the Fuchsian functions. were identical with those of non-
E}uchdean geometry. I did not verify the idea; I should not have had
time as, upon taking my seat in the omnibus, [ went on with a con-
versation already commenced, but I felt a perfect certainty.

On a later occasion, after unsuccessful efforts with a problem in
algebra:

. One morning, walking on the bluff, the idea came to me, with
just the same characteristics of brevity, suddenness and immediate

certainty, that...

And still another time w ~
nd still another time, when the solution popped up while

Poincaré strolled along a strect:

An experience which does not so easily come to expression in the
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I did not try to go deep into it immediately, and only after my
service did | again takhe up the question. | had all the clements and
had only to arrange them and put them together.
(The World of Mathematics, Chapter XV, section 2.)

I have quoted Pomncaré in considerable detail not because we can
expect pupils to have such marked experiences in school. But the same
quality of knowing, even in a considerably humbler form, can be experi-
enced in elementary mathematics. That the solution often comes sud-
denly, unexpectedly, is an experience shared by many inventors. But even
in those cases where the sureness comes gradually, it is of the very great-
est value as an inner experience. It appears most valuable when we suc-
ceed in finding the solution to a problem all by ourselves. But even when
the sureness slowly grows while we follow another person’s reasoning,
for example in a proof of the Pythagorean theorem, it is an experience of
inner clarity and control.

A person who actively experiences the soundness of the proof of
the Pythagorean theorem knows that the theorem is true. This inner con-
quest cannot be taken away from him. It is not the case that we believe
the Pythagorean theorem because it has been presented to us by mathe-
maticians or because a teacher has explained the proof to us: we know 1t
is true the moment we can grasp it with our own thought.

Mathematics is therefore a practical field which, despite the depen-
dence of pupils upon their teacher, serves to free them from bonds to
authority.

The teacher can of course encourage or restrain such a process of
independence. The more the student is allowed to orient himself within a
subject, the better. For this reason the students ought, at least in the
beginning of each new topic, to be given opportunity to gain first hand
experience with the arithmetical or geometrical subject materials which
belong to the particular section of study.

The opportunity to try new materials is, as we know, exciting for
most people in subjects such as chemistry and physics. What is more fas-
cinating than trying out a new apparatus, simple though it may be? To
test and to seek are wavs of getting answers to questions which one
poses. It is part of our instinct for knowledge to behave in this manner,
to go on scouting expeditions hoping if possible to make discoveries. Big

or little — it does not matter.




2WIMATHEMATICS ASAFIELD OF PRACTICE

. In arithmetic I have given examples of how students can gza “scout-
ing” and testing with numbers which they themselves have chosen and
{rmngcd (for example, Section 3.5.2). In geometry everyonc can draw
figures and look for what possible relationships can be uncovered in the
flgures, both in their own and in their classmates’. This element of look-
ing, secking, appeals to the individual and awakens his or her interest to
sce what others have come up with and to let others share in one’s own
results. In short experimenting and searching are a phase in which indi-
vidualized activity goes hand in hand with social activity.

{ A truly sumulatng tension occurs whgn one gro‘up of pupils have
.ound. one result, and another group reports the opposite results. No one
need teel beaten when it is seen later which group has made the right judg-
ment, because all the experiences were used in the search for knowledge.
o It also gets exciting when we have the choice of proving a supposed
Jawful relation or of looking for counter-examples. Which horse do we
bc{on? A proof is often demanding, while a single counter-example is
sufticient to throw out a theory we have. The art sometimes lies in being
able to find a counter-example. If the new examples instead confirm the
theory, shall we then change horses and try to prove the theory?

Once at the end of a lesson where we had treated the theorem that
two triangles are similar when their corresponding angles are equal, I
gave the following homework assignment:

Investigate whether or not the theorem applics to other figures
t_han triangles, 1.e. to polygons with four or more sides. You might draw
four- or five-sided polygons and feel your way forward. The angles A, B,
C, erc.. in the one polygon must be the same size as the angles A", B', C,
cte. in the other polygon. The question is: are the polygons then similar?
I assured myself that the students had understood the task and was then
curious to see what they would come up with the following morning.

A large group in the class had found that the theorem for tnangles
was true even for polygons. One boy who usually was not parucularly
outspoken in class said that the theorem did not applv o other pnivgon/s
than triangles. A smaller group of pupils had not come to any conclu-
sion. The pupils in the large group felt very sure of themselves.
Undcerneath that obviously lay a sense of belonging to the majority. One
could note their attitude of superiority toward the boy who chiimed the
opposite. It was an experience to see their reactions, those in the major-
iy, wien the boy went up to the blackboard and drew differently shaped
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polygons approximatcly as in Figure 4.1.1 below. (The simpler counter-

cxample of the square and rectangle even this lad had missed.)

Figure 4.1.1

4.2 The Formal

The more time we use for heuristic, seeking out kind of work, the

% berter. But to training in mathematics also belongs the learning of stan-
1 dard mcthods and becoming capable of using them and knowing when to
4 usc them. It would be an unhappy situation if students should begin

scarching for a new solution to a problem which they ought to recognize

§ from previous examples. The inexperienced person often takes a long

path to get to a solution where the person with experience only needs to
make use of a simple idea to re-make. the problem in terms of known

* technique. The risk here is that the mathemarics disappears, as routine

makes its entry, especially if strong emphasis is placed on memorized for-
mulas or formula reference tables. At higher levels in school many stu-
dents become conscious of the fact that calculation and mathematics are
not identical occupations. They know that calculation can be done by
machines. Even further from mathematics lies formalism.. the steno-
graphic dress of mathematics. How this and that are written is in reality a
matter of convention. That the set of real numbers between 0 and 1 can
be written C < x < | or E (x: 0 < x < 1) or (0;1) corresponds approxi-
mately to the fact that the symbol for four can be written IV or 4. It was
a bad pedagogical mistake of “the new mathematics” to put so much
emphasis on the rote learning of such things of convention. Through
this, teaching took on the character of authority; the pupils became
dependent on recipes just as the inexperienced person in cooking docs.

A

¥
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Particularly f fe b :
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dents want Fclf:ll does this kind of teaching become if a number of stu-
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3 ' . an authority was once
d cn;:)n;tmted by the argument of a high school class to their teacher:
y do you go through all these proofs? We believe v -
W oyouse ghall p 5?2 We believe vou anyway.’
. A. d vet there may lic something admirable in such a student
Xpression, s i , ; ‘
pression, a sound protest against a monotonous going through of
proof after proof, often with the good intenti f ~ lb'- i stringencs
roo) : itention of achieving stringency.
Euclid’s long lis initi 1 oartern whidh
2 ist of defin cor s ( "
g ions, theorems, and proofs i
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repeats in many mathemari ont) s no o vach
: 1atical presentations) is
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(0gIC 1n reasoning, points out the Russian mathematician / “hi i
e in Teasoning, paints. ' an mathematician A_J. Chintschin
i an essay rmalism in teaching mathematics in school. In the same
spirit are the words of the American Morris Kline:

To.tcach thinking we must let the students think. fet the stu-
dents build up the results and proofs cven if incorrcc‘t. Let them
fearn also to judge correctness for themselves. Let’s not push facts
down ?*tudcnts’ throats. We are not packing articles in a trunk T;
type of teaching dulls minds rather than sh;;rpens thcml.‘ o

(From “Why Johnny Can’t Add:
The Failure of the New Math,” 1973.)
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upon us a thinking-after which can negatively effect our fantasy and abil-
ity o come up with ideas.

It is important for the mathema
experience that the deductive side of m
sizing, concluding phase of problem-solving. ltis preceded by an analyt-

inductive phase where we seck after ideas, simplifications,
tc., in order to get at the problem.

es with the problem, listen
erspec-

ties teacher to have the pcrson.ﬂ

athematics belongs to the svnthe-

c;xl‘
associations to previous experience, ¢
Yet very first of all we must acquaint ourselv
(o its different sides, try to put it into some context or familiar p
tive. These phases of thinking we might call preparatory thinking, a “pre-
thought” as opposed to “after-thought.” We maintain an attitude in this
much like an architect trying out various sketches of a building,

stage
which must meet certain specifications. It is interesting to experience
again and again that such “pre-thinking” does not scem too tring. Otten

naturally

it feels stimulating, it pushes away any possible tiredness,
I because we are creative while we are doing 1t. Early on in the
of this kind of thinking without
we include

cnoug
lives of children, we can develop a sense

forcing upon them any precocious intellectuality. Here, too,
the art of making up and guessing riddles, of finding the right word. and
other forms of play which emphasize thought. The students” appetite for
“cracking” problems, such a valuable resource 1n teaching mathemancs.,
must be awakened (but carefully!) while they sull have the natural desire

1o seek out answers themselves.

4.3 Gaining Confidence in Thinking

problems on their own in
have one important experi-
in the way of

Even those who do not solve many
mathematics will come, sooner or later, to
ence: learning to be careful with what we happen to have
as. our own usually half-conscious opinions. It happ
il writes 90° by an angle which appears to be right-angled
and obtains a very simple solution which, untortu-

because the angle in actual fact is perhaps 877 or

subjective ide ens
often that a pup
in the given figure
nately, 1s incorrect,

35w 3T

thereabouts. And how many are there not who calculate 7 + 3
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because thev want to do things “in proper order”? Mathematics requires
attention, not just with numbers and g ical fi above
ention, O“,njthinking_ bers and geometrical figures, but above all

It is necessary to have command of certain knowledge, ¢.g., that the
multiplication 3 - 5 precedes the addition in the example above — only a
-convcntion, of course, but still important — or that the sum of the ang:lcs
na triangle is 180°. Some pupils who want to be on the safe side memo-
rize a great deal of such things, but 1 usually emphasize that one can
often help oneself with a simple example.

Those who memorize a bunch of things run the risk of mixing up
t}*.c memorized facts and can be psychologically limited to the need to
find the right thing in memory on different occasions.

. A few examples: “What do I do here as the last step in the equa-
tion?” {The pupils point to the equation 16.3x = 0.5.) “Should 1 divide
.5 by 16.3 or the other way around?” -— “What is the solution of the
giqu.ation 5x = 207” — “x equals 4.” — “Then you see what you should
do in your equation; do the same thing there.” — “Thanks, I know.”

The simple example with the same structure as the more difficult
problem has the pedagogical advantage that it is self-instructive — 1t con-
tr:butes to the emancipation from authority.

Another example: “I forget, sir, is the area of a circle nr? or 2nr?” —
“What does r stand for?” — “Radius.” — “What would 5r be, for exam-
ple, a length or an area?” — “A length.” — “And what would 6.28r be?”
— “Thark vou, I've got it now.™

' “Is th? sum of angles in a triangle 180° or 360°2” — “Draw a right
triangle.” (The pupil makes a sketch.) “How big is the biggest angle?” —
"90°” —— “Is it 180° then?” (Hesitation.) “Double your triangle to make 2
rectangle; then I'm sure you can judge for yourself.” (Figure 4.3.1).

I hold as very essential such practice in finding simple examples or
simple ways back to basics. When pupils succeed

2 U with this, they gain a confidence which is invalu-
able. They may even go so far as to have confi-
dence that they could reproduce, if necessary, the
proof of an important theorem, without needing

8| >

to use any special tricks of memory.

Frgure 4.3.4
We then perhaps begin to achieve the most

important goal of teaching mathemuatics: to have confidence in thinking

it.\‘n‘“‘.

5

§ MATHEMATICS AND SCIENCE

5.1 The Natural Sciences

‘The philosopher Immanuel Kant, and many others with him,

“there is only as much true science in the natural sciences as
(-4

claimed that
there is mathematics in them.” i

Anyone who has had the experience of insightful knowing in
mathematics, which was exemplified in the previous chapter, can casily
understand Kant's statement. Long before Kant, Descartes emphasized,
that during his school studies he found the contents in only one subject
to be certain bevond doubt: arithmetic and algebra.

Preparing for the study of physics, many have likely heard the
advice to lay a good foundation in mathematics: “Then you won’t have
any problems in physics.” It s both natural and a fact that mathematics
has become a cornerstonc of science. Yet onc may ask hiniself whether it
perhaps has not obtained too strong a position in school — at (h.c cost of
the study of nature itself — not least through the kind of tests"which are
given. In recent years even chemistry has become more and more “math®
ematical.” Of course it is a question of balance. The question is if the bal-
ance is good today. An exaggerated. mathematizing in physics and
chemistry places obstacles to the natural studics: observation, the devis-
ing of experiments for systematic exploration, looking for answers and. if
possible, finding a theory are cornerstones in natural science.

Let us compare mathematics and the natural sciences, beginning
with the latter. As the name implics, natural science is a summary of
knowledge of nature. Any understanding we might obtain must come
first from observation of nature, obscrvation which we do with our
senses, possibly intensified with a microscope, telescope, oscilloscope, or
other instruments. The observations collected must then be compared

21313
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£
ain observations seem to support each
ach other. In both cases thinking abot
questions which guide the researcher 1o
ptions, new measurement; when research hag
ement, 1 common factor, a regularity has beer}

atheory which summarizes. ;
As a criterion for the value of

. beable to predict the outcome

with each other and ordered. Cert
other; others seem to g0 against ¢
“the observations leads to new
new experiments, new perce

found; then it is time for

a theory, we require that the theo
and results of new experiments; that t
theory can be “confirmed” experimentally. When this has been done in a;
* large number of cases, when it has been shown that the results are repro-;

ductble and not just the result of chance, the theory can expect to be recs
ognized. Statistical methods must often be used to demonstrate that the!
obtained results are not the product of the rescarcher himself and his
sxperimental arrangement but correspond to objective reality. In cases§
where results have not been able to be verified b
theory gains only limited interest., N
on the practitioner: it is by its nature general. From Michael Faraday, 4
censidered by many to be the greatest experimental physicist throughout %
the ages, we have the following words worth thinking about, made in

response to letters asking him to comment on the value of various new .
discoveries described by researchers:

i

y other researchers, the
4
aturai science cannot be dependent

I'was never able to make a f
the descriptions of the best works altogether failed to convey to my
mind such a knowledge of things as to allow myself to form a judg-
ment upon them. It was so with new things. If Grove, or
Wheatstone, or Gassiot, or any other told me a new fact and wanted
my opinion, cither of its value, or the cause, or the evidence it could

give in any subject, | never could say anvthing until T had scen the
fact, '

at my own without seeing it, and

(Faraday to Dr. Becker, Oct. 25, 1860,

see L. Pearce Williams, Michael Farsday, London, 1965, p.27.)
Galileo himself, the father of modern physics, had, by and large,
policy for the natural sciences when he wrote:
ton, observation, and experiment. As early as in
liieo’s works we find the role of mathematics pointed out: those who

hoto solve sciennfic questions without the help of mathematics are
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to a supposed conclusion, but after that logical reasoning must con-
firm with certainty the correctness of the proposition. The contents of
a statement are, of course, a function of the axioms which we have
taken as a base.

Mathematics 1s a science which differs from natural science but
which plays a large role in it and which has been and is a model to follow
in many scientfic contexts. It is relatively easy in a mathematical system
to have the axioms which lic at the base of the system, but it was shown
during this century that certainty is not absolute, even in so clearly
delimited an arca as the whole numbers. To obtain a sufficiently complete
system for the whole numbers, such an encompassing system of axioms
would be needed that (according to a proof 1931 by the German mathe-
matician Kurt Godel) one could make propositions, formulated in terms
of the system’s language, which can neither be proven nor disproven
with the svstem’s axtoms themselves. Paul Finsler gave examples of these
kinds of statements, where, nonctheless, our thinking can determine the
correctness of the statement. In a certain sense, then, logical systems are
relatve. This might now be taken as a proof that mathematics cannot be
based upon that certamnty which logical thinking, according to our expe-
rience, leads to and therefore does not differ in character from other sci-
ence. This, however, would be to underrate thinking. That mathematics
cannot be “mechamzed” into a logical system need not cast suspicion on
thinking. On the contrary, it shows that thinking is the (only)
archimedean point which mathematics has available. Godel's conclusion
demonstrates that mathematics is a conquest by our thinking. This does
not stand in opposition to the entirely true statement that our sensory
‘perceptions play a large role in our ability to pursue mathematics. They
awaken concepts to awareness within us. We never really see a line, or a
circle, not even a point, but any things stimulate us to arrive at these con-
cepts and become conscious of them.

Flere hies the fundamental difference between mathemarics and nat-
ural science: mathematics springs forth from thinking itself; natural sci-
ence must be based on ebservation. I do not, however, hereby consider
myself to support Kant's staternent that the laws of arithmetic are "a pri-
or1” wuths. They are conquered by thinking in an alternatng play with

the senses.

DESCARTES. NEWTON., AND GA UsS t?

5.3 The Two Parallelograms

During a lecture on natural science, Rudolf Steiner gave a good

example of where the border line goes between mathematics and physics.
I would like to relate it bricfly here: o f} :
The principle of the velocity parallelogram and the prmcnplcl ° lt e
ingly J : a particle which 1s

force parallelogram seemingly have the same form: a p1rFxcl<. ich s
given two simultancous velocities as n Figure 5.3.1 obrtains a velocity
which in direction and size is determined by the vector sum of the given
of the diagonals in the parallelogram formed).
rticle is acted upon by two forces as in Figure 5.3.2,
the vector sum of the given

i+l

velocities (one

Analogously: if a pa
then the resulting force is determined by

forces. vi “wtw

Figure 5.3.1 Figure 5.3.2
about in completely different ways: the

These principles come f : _
: : f velocity and the

resulting velocity can be derived from the concept 0 :
given velocities, while the resultant force Rm:lcxplc has bCf:n arrived at
empirically. Where the force is concerned, it is naiure which shows us.
that the parallelogram principle holds (at least so far...).

5.4 Descartes, Newton, and Gauss

Just as there are and have been thinkers who describe mathc‘marics
atural science, so are there researchers who have held physics, for
athematics. The most prominent representa-
ably Descartes. The human spirit, according

asan
example, to be a form of m

tive of this position was prob
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mathemaics e ‘ athematics

Rl 1;:) um(?u:.l_\ published work Regulae ad directionem ingeni

; es for the guidance of the genius).

His me ts basically 1 |
e th(;‘d s btxsu.all'\ to pursue physics according to the deductive
fech .l 0 1m.l.x ematics. Phenomena ought, according to Descartes, to be
»l c ‘.) ) i \d Ly ) B -. M ’ '
e : C u:;;:d trom axioms, just as theorems in mathematics build

axtoms. The results of physics should be capable of being derived

g .
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came to be one . . .
e ! 1:)}: one ‘of the physicists who.pioneered the way for the 19th cen-
y mechanmistic world view: that natural science must be based in the 4

end on mechanics (space, time and movement).

Desca io oy .
rtes tried to practice what he preached. He claimed with |
b
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f ]L,]d on o.f vacuum. Descartes’ deductive way of doing resmrcﬁ
ouled up here in-a very noticeable way . ‘
As fur X : i
o o fu tliFr examples showing that the roots of mathematics lic in
own thinking, | would like to briefly mention

— that Pascal all is .

ascal all on his ce of i

own by the age of 12 had achieved a

knowledge of i
dge of geometry cquivalent to a number of the theorems in 3

Euclid’s Elements:
— that New i
Camprt Newton, at the age of 24 during the 1% years when
; f (l;jg niversity was closed due to the plaguc, conczived the ma
- ¢ Univer, : ‘ aguc, Cui ed the maror
part of t n.l proneering mathematics which he later published; ‘
~— thar Poncelet wi i ’
over | ril o‘mclu with no help and while a prisoner in Russia for
a year 2 i 1 ‘
o ) '(( uring the Napolean war) laid an important foundation fo
1¢ new projective geometry. B

[t is we ‘ntion: .
e ;)rth. mentioning that Newton, in his famous work on the
t ematics .~ .
tical principles of natural philosophy, lays a system of defini-
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One must as far as possible account for similar effects with

ar causes. For exampic, hreathing n humans and in anmimals, the

sinnl
a. the light of the Kitchen fire

fall of a stone in burope and in Americ
arth and from the

and from the sun, the reflection of light from the ¢

plancts.

And:
in experimental physics one must hold true those propositions

been won through induction from phenomena, unul

which have
other phenomena come to be known...

We sce that Newton clearly understood that the conclusions of

_in contrast to the deductive results of m
auss’ measurcemeit of the sum ot

physics are inductive athcmatics.
I would also like to describe G

angles in an enormous triangle whose points he placed on three moun-

1 peaks of Hohenhagen, Brocken, and Inselberg,

tain tops, namely ol
auss made the angle measurements

where the shortest side was 69 km. G
and found that the sum of angles was so

with the aid of optical signals
Id not possibly have shown anv

close to 180° that the measurements cou
other value. :

Did Gauss do this measurement in order
the sum of angles in a triangle is 180°2 Of course not. His question — 1
1<t have been: when we measure an angle using optical
instruments, for example, is it correct 1o usc plane Euclidean geometry
on the measurements? As we discovered in Section 3.10, in a spherical
triangle the sum of angles is greater than 180°. Gauss’ question con-
cerned: which of the known geometries should we apply in a specific
al context? Only through experiment, Gauss rightly belicved,

to convince himself that

all certainty — mu

practic
could he get an answer 1o such a question.

Let us lastly return to the starting point for this ch
be to the good of education in both mathematics and the natural sciences
atural subjects did not become overgrown with mathemaues.
Al difference between research in the natural sci-
nent ought to be given much room in

apter. [t would

if the n
Because of the essent
ences and in mathematics, experit
physics and chemistry. The applications which currenty are given so
much attention in the natural sciences are often a numerical processing of

previousheglven formulas. This does not invite creatve mathematical
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;}rammg. I sag this fully aware that problems in the natural sciences have
cen a superb source of inspirati / 1
> A sup ‘ of inspiration, one of the very best, to mathemati-
cians in pioneering new roads.

MATHEMATICS
ASASCHOOLSUBJECT

6.1 Alternating Between Practice and Orientation

Mathematics is a practice-subject, above all. If we limit ourselves to
caleulation, it is entirely a ficld of practice. On first going through an
arithmetic formula or a theorem in geometry, pupils generally obtain
only a first acquaintance, so 0 speak. They know the theorem no better
than we know a person after a short first meeting. Even the first solved
practical example in a new area gives for many only a hint of how theY
solution is actually done. Here 1s verified the old expression: “repetition
s the mother of learning.” Repetition in the form of practice, with as
“much independent exercise as possible. '

We as teachers, on the other hand, may contribute to a first meeting
with a mathematical topic by helping it to penctratc more deeply into the
pupils than if we spoke like 2 book. Verbal teaching with its dialogue
between class and teacher and between students themselves provides
~ excellent opportunity for creating an atmosphere of excitement around a
new element, so that an air of receptive readiness pervades the classroom.
Such artentiveness means that impressions are stronger than otherwise.
We forget more casily those things which we have placed somewhere
without thought. If we want to help ourseclves remember where we put a
key, we should pay careful attention to and describe for ourselves what
the surroundings look like where we place it, and imprint in our memory
the picture of the key and the nearby surroundings.

By orienting a class on the “environment” surrounding a mathe-
matical area, cither by way of introduction or on a suitable later occa-
sion, we give the pupils the opportunity to have living memories ¥
knowledge. In Chapter 3 I have given a number of examples of such on-
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points. They stood unusually long but finally onc said to the other,
“You know, this is really hopeless. No matter what, we can ncver get a
point!”

6.2 Quantity and Quality —
Teaching on Different Levels

We live in a society in which quantities are given primary impor-
tance in many areas. We need only to think of the controversial subject
“grade-point averages in the competitive school” to become aware of
how society is organized such that quantities quite simply play a major
role. In recent years quality has begun to be placed firs; especially in the
debate on our environment the expression “quality of life” has gained
acceptance, even though often weak and though it surely invites the
broadest interpretation.

Galileo’s challenge to “measure that which is measurable and make
objectively measurable that which is not” gained a following which he
himself could hardly have guessed at. In various areas of society today
there may be found a number of tests which make the claim to measure
people’s qualities and present the results in the form of easily interpreted
point totals. Not long ago we could see examples in the newspaper of
emplovment tests which showed how arbitrarily far the process of mak-
ing the unmeasurable measurable has gone. In the 1800’s there prevailed a
" widespread optimism within science, which by that ume had already cel-
ebrated great triumphs — for example, the finding of the planet Neptune
through a number of mathematical calculations. Qualities such as heat,
color, and taste were thought to be amenable to “explanation” in terms of
quantities in space and time. Even medicinal effects were thought to be
capable of prediction by calculation along the lincs of mechanics.

The quantity-minded stream of thought actually goes back.to
Descartes more than to Galileo. I cite from the introduction to a book on
Descartes by Paul Valéry:

e
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Descartes is certainly one of those who bear responsibilizy b’
for the life style of aur times, 1n whick evervthing is judged quanti-
tatively, When the diagram was replaced by numbers, when all
knowledge was put in the form of comparative measurements from
which followed a de-valuing of anything which could not be
expressed in arithmetical relationships, then something occurred
which has had the greatest import in every area. To the one side is
put everything measurable, to the other everything which cannot be
measured. '

(From D. Valéry, Les pages immortelles de Descartes,
Ed. Corréa, Paris 1941).

It would be carrying things too far to make Descartes scapegoat for
the onesidedness in our culture. But it is apparent that he overestimated
the value of arithmetic and that there is much truth in Valéry's words.

A child who has lcarned arithmetic and done an addition
according to the rules of arithmetic has in all certainty found in that
doing all of what human thought is capable of finding, y

claimed Descartes. ,

We can appreciate Descartes for his influence on natural science,
which in its turn contributed to an impressive technology and through
that to a strongly developed intellectual acuteness. Analytic geometry,
introduced primarily by Descartes and used later in developments in the
theory of functions, gave technology the prerequisites which were
needed to apply the laws of causality to the construction of instruments,
machines, and ships of all kinds.

But there has also existed and still exists another scientific direction

. apart from the quantitative, although not so patently successful in out-
i ward appearance as the mechanical-mathematical stream of thought.
Il Atomic physicist Walter Heitler expressed in a lecture:

One directs attention to qualitative phenomena... to qualities
which have something to do with the obscrved object’s wholeness.
One of the most important of this philosophy’s founders is Gocethe,
with his writings on natural philosophy. : ‘é
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Heitler gives “The Theory of Color” and “The Metamorphosis of
Plants” as examples of Goethe’s efforts in these directions.

He directed his attention to the figure’s unity and to the quali-
tative context. Goethe is the founder of modern comparative mor-

phology within botany.

Why, you may ask, this long introduction before we get into the
theme of teaching mathematics? Because 1 want with these historical
examples to give a background to problems of which the mathematics
teacher ought to be aware. What do we want from our teaching? Is it the
main thing that students train up a given measure of tools and knowl-
edge, i.e. do we place the quantitative aspect first? Schools of engincering
want certain prerequisites, business school others, schools of medicine
theirs, and so on. But should the high school or corresponding levels in
our schools be preparatory for technical schools? If we want once again
to place qualitative aspects and the individual’s devélopment during his
“and her time in school in the forefront, should teaching then be pressed
fito forms which are determined by point totals on exams?

Of course, all higher education demands a measure of prepara-
tory knowledge, but it ought to be just as clear that every pupil

should not need to go through the same preparation as candidates for
higher education. The solution to the problem of how one can meet
the needs of all the students must then be sought in some form of dif-
ferentiation.
Should this differentiation mean that every pupil studies at his own
pace and perhaps follows his own individual program, or can differenua-
“tion be best done within the framework of the school class? As far as |
can see, the solution ought to have its emphasis in the latter alternauve
but with some elements of individual programs.
It ought to be possible to keep the class together and active around
a basic framework of teaching and exercise materials.' But this requires
that students be allowed to work at different levels of understanding and

R " _ . . X .
- ]n‘lhc.\\nldorf School and other Swedish high schools the class is a fixed
group which takes virtually all subjects together and which stavs as a unit vear after

r until graduation.
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achicvement. In some of the teaching examples in Chaprer 3'1 have
shown that there are problems which allow different levels of abstrac-
ton. They can be solved in an illustrative way, they can be treated more
abstractly, or they can be approached in an clegant manner which
directly leads to general results (see triangle numbers in 3.1, the rabbit
problem in 3.3, the bottom sum problem in 3.5.2, the successive number
cumt in 3.5.5 and exercises in projective gcometry in 3.10). A number of
results can be achieved with very simple graphical methods or with pos-
siblv very demanding algebraic approaches (c.g. the problem of the
meeting trains, the solution of simultaneous equations, ctc.).

For spatial gcometry an analogy to graphical solution can be that
some pupils construct paper models and measure them, while others
apply Pyvthagoreas” Theorem, solve an equation and so on. In such cases:
the pupils do not solve the problem on different levels as in the Fibonacci
rabbit problem but rather in different ways. It is a matter of different
choices of method. The advantage with problems of this type is also thar
groups which are working in different ways can become interested in
each other’s results. In this way a social element comes, without special
offort, into the lessons.

But does not such choice of methods mean that groups work ac dif-
ferent speeds? Of course it may happen, but then the groups can unite
around the work which remains to be done. The teacher is also available
the whole time and can help those who are having difficulty with meth-
ods which are more demanding than the illustrative or graphical.

_ This question of differentiation is often limited to mathematical
problems of a quantitative nature, which concern calculating a length, an
angle, an arca, an intersection, ctc. Would there not be reason to give
considerably more time to problems of a qualitative natire?

~ What do such problems look like?

In principle they are problems in which investigation, not results in
numeric form, plavs the primary role —.in which one nceds 1o use a htle
fantasv, where the urge to build, construct, and shape can be put into
action.

It is not difficult to find problems of this type in geometry, where
quite naturally a whole category of problems involve constructions of
different tvpes. 1 need not here to further into this kind of problem but

choose instead a few other types:
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1. Exercise 1 in Section 3.7.3.

As we know, the network pattern for a cube
may have the following shape (Figure 6.2.1): the
four squares in a row can form the walls, the other

two the top and bottom.

Problem: How many different networks can
a cube have?

Bv two different networks we mean that the
one network cannot be covered by the other even if
the networks are cut out and turned around or turned
over. For example, the following networks are the same (Figure 6.2.2):

Further. two adjacent squares in the network must have a common
side, not just a common corner. A network such as in Figure 6.2.3 1s not

Figure 6.2.1

Alowed.

Figure 6.2.2 Figure 6.2.3
We have here a gcomctric-combinatoric problem of a constructive
nature. It usually occupies the whole class, and quilc'intensivcly. Groups
often form, and ! cmphasize~thnt the problem concerns, above all, !.hc
question: how do we know when we have found afl the networks which
are to be found? How shall we determine that there are no other net-
works than those we have made? We come to the conclusion that some
form of systematic ordering must be used in order for us to be able to
determine how many networks the cube has. With this formulation it 1s
not decisive how many networks any particular individual or group
comes up with. The work is not meted out on a performance basis.
The pereon who finds “oniy™ two nctworks may i::u"i'lectu.mllj:' be
‘he one who succecds in finding a veeful systematic ordering.
(Concerning the number of peiwarks, see Section 4.7).
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This problem type can have many variations, even problems where
the task is to find a single correct nerwork for a solid. For example, we
can ask: do both of the patterns in Figure 6.2.4 work for making a tetra-
hedron (three-sided pyramid)?

Figure 6.2:4

2. We wish to investigate how the diagonals of a quadrilateral can
be determining for the quadrilateral shape. We take one of the following
alternative conditions as a starting point: '

(1) The diagonals are equal in length, at right angles, and bisect each other.
(2) The diagonals are equal in length and bisect cach other.

(3) The diagonals are at right angles and biscct cach other.

(4) The diagonals bisect cach other.

(5) The diagonals arc at right angles. One is bisected by the other.

(6) One diagonal is bisccted by the other.

(The list could include still other alternatives.)

What kind of four-sided figures do we get? Can we summarize the
results in a table which gives us an overview?

This problem might lead into a discussion on what are nccessary
and/or sufficient conditions concerning the diagonals such that we get a
rectangle, for example. How is a romb characterized by its diagonals?
And so on.

3. (From a period in spherical geometry.)

A person travels 1000 km south, then 1000 km east and finally 1000
km north. He is then back at his point of departure. Is there any starting
point where this is possible, other than the North Pole? '
This problern may seem to have the character of a trick-problem,
but it gets the imagination into action (Solution in Section 9.9, exercise 5).
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”And finally I want to mention that projective geometry provides an
exee ent arena for problems of a qualitative nature. I limit myvself to one
xample here and refer additionally to Section 3.13.

4. .'/'x el . 5 . - .

n ~d\\‘ begin with three corners A, B, and C, which form a triangle
\\hn lsn es lAB, BC, and CA. We choose a fourth point, P, anywhere in
the plane (bu i cting i
i d}:c thrf ‘ ~t not on\;/hc sides of the tnar.lgle) .1.n.d draw connecting lines

s ec corners. We then get three points of intersection, X, Y, and Z
’“|u h the ]m'cs AB, BC, and CA. What does the dual to this figure in the
planc look like? (The dualization is based upon points an ines exchang-
I l ; p p ines ¢exc 1.‘1nb

Jing roles in the plane.) And what occurs when P happens to lic on one of
the triangle sides?

| It is muc.h more difficult to find qualitative problems in arithmetc
and algebra, since the material there is in fact numbers. The following
examples may serve to illustrate:

a)lsit necessary for a whole number to end in 5 in order for it to
be divisible by 5?2
b) Is it sufficient for divisibility by 5 that a whole number ends in 02

The students may motivate their answers with the aid of examples.

¢) Is it necessary for a whole number to end in 0 in order forirto
be divisible by 10?2

d) Ils it sufficient that the number ends in zero for it to be divisible
by 10? '

Please note: the purpose of these exercises is for the pupils to learn
the c?nccpts of necessary and sufficient conditions and to give them
experience of what it means when conditions are both ncccssnrz and suf-
h._cx.cm. We see often, in the most widespread contexts, necessary and suf-
ficient conditions being mixed up with each other in evervday
arg:mcm.x;izn. \}:(/hathonc person emphasizes as necessary conditions are
understood by the other as a statement con ing icient conditi
For example, a person responsible for takifmirr::?\S:g:'c]}:ir;[t L‘_’f‘d‘f’f’}“’s'

g R ory teacher

sai\ s} X is very knowledgeable in his field. He has even published books
~ .\\“:nm have received good acclaim.” The sratement may be interpreted

o N '.‘ e e . R} el o 3
t the speakes considers X’s knowledge of history as a sufficient merit
- appointment. But what of N's teaching abilities? lsn't knowledge n
b o

(97
o
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the subject arca enly a necassany prerequisite, JUst as the ability to teach?
And what would be sufficient conditions in this case?

2. The Pythagorean Theorem is one of geometry’s most importait
thecorems.
As we know i1t says that

c=ai+ b

are the sides of a right triangle and ¢ is the hypotenuse. Is

where aand b
fficient condition for

the condition “right triangle” here a necessary or su
¢t = a’ + b to hold? Tt is obviousty a sufficient condition, as always in
statements of the form “1f..., then ....7 Is ™ right triangle” also necessary?
As a rule we overlook this question.

3. There exist, as some may know, so-called prime fwins, i.c. pairs
of prime numbers which are successive odd numbers: apart from the
jowest we have

(11;13), (17;19), (29;31) cte.
(As far as I know, it is stll not proven that the numbers of prime

twins is infinite.)

Are there prime triplets, apart from (3; 5:7)? That is, can three suc-
cessive odd numbers, larger than 3, all be prime?

A problem of this kind requires hardly any prerequisite knowledge

at all and can immediately engage everyonc in the class.

4 The well known problem of how a ferryman would geta woll, a
sheep and a head of cabbage across a river in his rowboat. (Or a tox, a
chicken and a sack of grain.) He mustassumc that the wolf will eat up
the sheep if left alone and chat the sheep will eat up the cabbage. Further,
he has room in his boat for only one thing at a time besides himself.

How does he get them across? This is a kind of combination prob-
lem, which can give the teacher cood insight into the pupils’ abilities,
especially if they hand in their solutions in written form.

A simpler variation on the theme: A truck can carry 2000 kg. Tt is
to move 5 heavy machines weighing 300 kg, 400, 500, 1200, and 1600
respectively. How should the transport be organized in the simplest

way?



...)ZIM ]ll w4

t)lc”l l \V(.)Uld also in Udc (o] 0] 1 S

S S Cl ”lt)” atoric
S10 b o

dS 1o dxa“’ dkC1 n trees (631 Sl”n‘ AT d‘a

b ] ,j g 1 h b ~ H .
ters are {o c graere a P a eticaily.
C()IHCS ]USt Afte[ ‘uld W}”Cll SequellCC )UJ(

5. As qualitative pro
problems in which one nee
orams, or where groups of let
) Which letter sequence
before the sequence FCDAE

five letter
hen all possible sequences made up of the five
whe

s
habetically? )
o only once are arranged alp el o the nexs o
“ appeanrr'nb' ‘v of students have an easy ume
The majority ©

l“g !L[t(‘l Se(lllellce n ch exam €S ut ré rr ore d“f\‘cult Vv in findi”g

4 . 4 ’ .

i su } ex pl b ‘[hc 1 ]

.h - d o F 3 1 b le__..Vri 1 e O o
the pl ece “lb SCquenCC. .‘.(GICISCS in g01ng A -k&Lj as in Ct‘L' I ‘D'IOUVPHIDS,
numober Se(lue I O o] of will 1 g
nces etC I‘Cqu em re Cff It nones thinkin
h - eLC. . 1 1

s A-F with each let-

6.3 Should All Pupils Take Mathemarcs

. & P y Ie&.OllulleIldJ(iOIl
B \SCd on ex CH'CHCC in the xald()lf SChOO'AS. m -
P p <€ ol 1t t i It It
Would b’c [llat all u l’lS b ‘bWEn the OPPOrtU.n ’\. ot l\kvc ”ll[he“lltlks
dul“lg [he \Vhole Of thell SChOO1 CdUC(l[lOn, \Vhl(.h n thc nldO!f SChOOlS
18 IWCltC)CMS. t s >
BU[ the answ er to th(— qucs[lon m he he ldl“o 18 llatula“v
dcpcll [e]e] anizallo
dcn[ on [he klnd Of SCh 1, [he ()lg\ 1Z3 n
t)lc integra [¢] (){ [of )()Ol su jCCtS, ¢ d (o] d )
1 2 anion S } h) in ab Ve 1” ont
fol”l. A SC}]OOI Whlch SCCkS to glVe Pup‘ls a bASlS tOl SPeC1
a rai n “y om a S
i ssentia
\()Catlon lt ni g dlf{els € ! . f[
g < n, an [ < o }.)t t
ener '\l I)Kepal ation, dUC iron a iry irom
T h ce Of A Ork. Ih(. \b aldorf S»hO()lS b(.
or ¢noi v

S(}I()()l. [h(:ll l)X”llal y ()31 1s 1O (iCVCl()l) \IIS()t.H as pOSSl
feeh” A“d W 111 into alg‘ mnner lldl”lo[ly SO [h&t \Outh can g0
g’ - D

= el
b ty l\- 3 [
VI[]I a 111 to ObSCI Ve and ]‘ sten Lo [l!c Sur our d”) WOT 1d we
\ = “ ) LI‘ A b
-l“d cons, crm !ll.llLlIC Jd e”lC”tS tnld maxe “‘-H %XO

i
]h 5 d ch e NS > same gods. V
ment S h'\VC ‘hL san ¥ o
¢ S C 1 3 .(’ < ¢ ary .d\O( 1 g : ] e )
' “’] *11\/ ‘ .(I)H ll\ \{)\Cil\'\[icﬁ hﬂ.v SO 1nan> Dr)POl ¢
1 me ¢ B un <> ’
li I} ) Upln‘

UJ“I 1int 3 3T ‘]‘} v
¢ OY

at ace ¢

l D IC INCT \b)l‘ll(.b thl }_'ll : 1L 1

pupils va

of the courses, posm-l

he goals of the schoo

fic kinds of
chool which secks to give
the pupil’s later C(_h:ca\:lonf
Jong to the latter type ©

; bie thinking,
into life
igh pros
unded decisions.

rogiving

o be found in the

SHOULD ALL PUPILS TAKE MATH EMATICS 1253
schedule during alf the vears in-school, even if possible in schools which*
prepare for specialized work. For safety’s sake, I would like to emphasize
thac I do not consider machematics to be more important than other
school subjects. Every activity has its special value. Any one of the sub-
jects in school may be the field of acuvity which at a given moment is the

very most important for a particular pupil, '

Mathematics contributes with qualities which cannot be replaced
by exercises in other subjects. The partcularly valuable aspect-of mathe-
matics is its opportunity, properly pursued, to develop confidence in
onc’s owri thinking, a confidence which js built up through experiences
of inner certainty of knowing.

Mathematics is, of course, not by any means the only area where
one can develop powers of thought, but it would be going too far in the
other dircction to consider courses in toret
to training in mathematics. In translating from one language to another,
even to or from Latin, considerably more elements of “convention”
rome into play than in solving problems in mathematics. Those who

would draw a parallel between the rules of mathematics and grammar y
thould consider that grammatical rules c

sften have exceptions, which clearly
thows that a language does not build
Ipon logic in the same manner as does
nathematics. The exceptions, in fact, are
that bring language alive, and the fasci-
ating aspect of language studies is per-
ips trying to speak and write so thar it
wunds truly genuine.

That there are pupils who are
fted in language but have great diffi-
Ity in both arithmetic and geometry
even drawing the figures — confirms
it language and mathematics direct A
'mselves to youngsters in different
ys- Ina class which [ was fortunate to ¢4
»w espectally well, the best student in
nch could not, even after help, see
th in a two-dimensional drawingofa ,
:e-dimensional solid (Figure 6.3.1).

n language as an equivalent
guag

Figure 6.3.1
7 you sce the three-sided prism <with
triangle ABC as the bottom

and A BC as the topé ‘%
Can you also sec three tetrabedrons
hich this prism is divided into by the
three diagonals AB" A C,CB?
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- be a cause of suffering! Nor t !
drearv or indifferent. o ) © be something
Itisafa :
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(2) that these pupils get help from a special teacher as early on as

possible.

In most cases both measures are needed. Tt is difficult to predict

how successful the resules will be for the individual pupil.

I have had pupils who had great difficultics when I reccived them in
the beginning of the eighth grade but who went slowly and steadily for-
th grade, the last vear, a pupil awakened and devel-

ward. During the twelt
oped his talents (still within the framework of easy problems)
untalented in the subject as

unexpectedly well. Such pupils were not as

one might have thought they were dreamers and first awakened to con-
sciousness in their thinking at the end of their schooling. One of these
his clementary class teacher, had as a newcomer
been looked for by his parents a few hours after the end of the first day of
school. He came home four hours late. What had he been doing? Standing

and watching an excavating machine digging, without noticing the nme.
nor come to the kind of involve-

Other pupils have not awakened
ment in the subject which one had hoped for. A failure? Perhaps.
Without it being taken as a kind of gencral excuse 1 would like to men-
tion here that it has happened in rare cases that the pupil, several years
after leaving the school, has succeeded in working up an ability in mathe-
a where logic plays an important role. One

pupils, as 1 heard from

matics or in some other are
pupil who had-difficulty getting better than just satisfactory results on
Lis exams, studied several years later at university and got his degrec in
mathematics with good results. .

The awakening of thinking can come suddenly. A Norwegian
teacher told me once about a boy in the fourth grade who was still very
weak in arithmetic and drawing geonietrical forms. He had, on the
other hand, a rich fantasy, so flowing that its effects often spread out
over the whole class and caused the teacher problems. One morning
during the spring of fourth grade the boy came to the teacher and said:
«Teacher. [ can do arithmetic now'” The teacher could not help being
doubtful, but it turned out that after that day the boy worked practi-
cally every problem correctly and became the best in class. He later

ook the highest academic honors and is now active as a professor of

mathemarics!
Perhaps the most famous example of success after leaving school

for a pupil with low grades 1s Finstein, who is said to have “failed” in
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arithmetic. These sunshine examples are not intended to cover up the dif-
ficult problem we face, but they have their place in showing that we need
not resign ourselves if the efforts to help weak pupils scem give litdle
result. We need not have the expectation that they will become profes-
sors of mathematics, but we can sharpen our powers of observation 1n
order to better notice the progress.

A number of experiences seem to show that the greater variation
we can achieve in our mathematics problems, and the more we can pos¢
problems which do not require very much previous knowledye, the
greater are the chances that weak achievers will be stimulated to learn
important basic examples.

The need for concreteness in education seems to increase over the
vears. Some pupils in the sixth through cighth grades color geometric fig-
ures in order to get a clearer grasp of the concept of area. Arcas can also
be compared by cutting a shape into picces and putting it together again
in a new form.

And how many pupils mix up mr (the area of a circle) and 2mr (its
circumference — despite the mathematics teacher’s efforts with the
dimensional comparison of r* and'r respectively! Not until in metalwork,
where the task is to make a bracelet with copper sheet as the material, do
the work and the calculation problem become concrete enough for some
students so that the formula for the circle’s circumference takes on reality.

“There is no doubt that desk calculators have a part to play in high
school, but in elementary school 1 think that the advantages of the caleu-
lator in certain parts of the curriculum do not outweigh the disadvan-
tages which follow in the calculator’s wake: above all, a growing
dependence on tools whenever calculations have to be made. 1 am con-
vinced that a sound ability to carry out numerical calculations with pen
and paper is a neccessary prerequisite for achicving the capabilizy and
assuredness which is desired in mathematics. '

The majority of pupils in the eighth and ninth grades at Kristofter
School have not shown unwillingness to do their own numerical caleula-
tions. Many pupils in these grades have the need to recapitulate and prac-
tice clementary procedures in arithmetic. 1 fear that the pocket caleulator
would have covered up this weakness, and likely made it worse, i had

come into general use.

BEING AMATH TEACI—'{ER
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Children in the lower (1-3) and middle (4-6) grades want to come
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crete contact with the problems which are to be worked
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) from practical participation plays a decisive role for them

Piaget’s re ' '
g search confirms in large measure the basis for the curriculum
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There ar is1 I
are three prere
three prerequisites for successful teaching. The teacher

l‘ oy 'v ‘
be familiar with developmental psychology and knowledge of

Y



BBIBEING AMATHTEACHER AMONG TEENAGERS

“" which Rudolf Steiner outlined for the first Waldorf schoo! in Stuttgart in

)P,crations" up to at least the age 12 years. possibly a few more years.
“irst from about 15 years of age is there a maturity for tasks within the
realm of “the stage of formal operations.” '

. Piaget has described a number of examples which show how much
in vain it would be to begin with abstract things before children have the

maturity which is required.

In the-Waldorf schools phvsics is taught beginning in the sixth
gmc‘lc, chemstry f_rom the seventh. The pupils are trained methodically
to follow attentively along in what is happening in simple experiments
and afterwards to describe them. Eventually some of the experiments can
5 . « . 5 : . - - L.
be contrasred with each other and give rise to thoughtful reflection, so
fhat t.he class.learns to compare and, in time, to draw simple conclusions.
I‘he important thing is for the work to be based upon experience of a
proccss..Tlxe class is asked to draw the experimental apparatus and to try
to describe “what happened” as simply as possible. ‘
. This drawing and describing (first verbally, then written) comprises
n important preparatory stage for a more concept-oriented penetration

of natural phenomena.

In a corresponding way teaching in mathematics should go from
the concrete éxperience to concept and context. The rule “from hand to
'h‘cart to .head" makes possible meeting the children on their own level.
Fhat which the hand does — draw, cut out, form, shape or build — gives
'the chil'd inner experience. In mathematics these can include inany
impressions of beauty in svmmetries or other relations. The activity has
then e.ntercd into the child’s emotional life, gone from hand to heart.
Experience shows the best, most fruitful questions for concepts and
cx:pla-nations come from pupils who do not ask out of a quick intellectu-
ality but out of a need to go on from their emotional involvement to a
clarity in thought.

In an article in Scientific American (No. 11/1953) “Flow Children
Form Mathematical Concepts,” Jean Piaget writes:

~A child’s order of development in geometry seeins 1o reverse

e

~.the.arderipf historjeal di

very, Scientific geometry began with the

th figures, angles and so on), devel-

~ "‘ "-‘w‘
~Euclideait dystem (copeernediw

17th century the :a_c-c;ﬂlcd projective geometry (dealing

i

ar N R Y . . . -
1919. Piaget demonstrated thar the child lives “in the stage of conerete

PUBERTY 1259

with problems of perspective), and finally came in the 19th century

to topology (describing spatiad relationships in a \,_";‘HL‘X'JI qualitative
way — for instance, the distinction between open and closed strue-
turcs, interiority and exteriority, proximity and separation). A child
begins with the last: his first geometrical discoveries are topological.
At the age of three he readily distinguishes between open and closed
figures: if vou ask him to copy a squarc or a triangle, he draws a
closed circle: he draws a cross with two separate lines. If vou show
him a drawing of a large circle with a small circle nside, he s quite
capable of reproducing this relationship, and he can also draw a
emall circle outside or attached to the edge of the large one. All this
he can do before he can draw a rectangle ... Notuntil a considerable
time after he has mastered topological relationships does he begin to
develop his notions of Euclidean and projective geometry. Then he

build those simultancously.

I permit myself to doubt strongly the last statement. Need and
ability in Euclidean geometry, according to my ¢éxperience, come before
abilities in projective geometry. But as a whole the quortation points
clearly to the importance of a didactic road from the child’s personal field
of experience to concept formation via the inner experience.

7.2 DPuberty

When the children near puberty and enter into it, their repertory of
feclings is considerably broadened. Interest knows no bounds, and it 1s
important to direct it our into the world, away from the ego. Even the
intellectual powers increase strongly in many pupils. It is. striking how
-year-olds like to get into discussions with teachers. Therc

ho always get the last word in. The will to discuss sometimes
sion of an instinct to sharpen the intellectual tools.
Ty R of con-

willingly 15
arc pupils w
gives an impres

[n this phase of life, of liberation from the

. . . - e e B3P .
frontation Y:n'h thc; problc.n.ﬁs. /,-O'Q'}‘Elgggktjuh quediBne-of lte’s me ning,
and while filled with sensit '1Q,/m‘\?'t>n\1m% ag x@%sﬁvcncss but a\f;p-l.dc-
: (S 9 gumnal ) &
{ w : AN .
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alism, it is distasteful for many pupils to “plod” through technical con-
cepts of arithmetic, to recapjtulate and firm up so-called basic skills.
Some become so out-of-tune by such routine exercise that theyv can't
cven bring themselves to get started during a lesson period. On the
whole, youth in this age want to test their powers on new problems and
usc their cleverness in a conscious wav,

Recapitulation and practice must be done in such a wayv that one
simultaneously brings in something new. The voung child’s unconscious
demand for concreteness in work has been transformed to a demand that
the content of instruction be motivated, anchored in reality, not necessar-
ily marterial reality. Youth have a right to get motivation from adults.
They want in fact precisely to train up their ability to formulate motives
for their own actions. The more the theme of classwork can come alive
within the youngsters” own thinking without the teacher having to make
introductions and expositions during the work, the better.

For some pupils, ability in mathematics seems to take a step back-
ward during puberty. Self-confidence leaves them during classwork, just
as it probably fails them during their free time. It is enough for a prob-
lem to “look hard” for some form of resignation to set in. During some
lessons it is more important to find the right psychology than to speak to
the subject. Mathematical activity requires, as we know, both time and
patience, and it must be truly difficult for a pupil to bring himself to
solve a problem if his self-confidence fails him in the classroom. A
humorous word from somewhere can break the spell, or perhaps a'pause
with a few folksongs? Such a pause shows in any case that the teacher is
not so incredibly intent on “making use” of every minute. Classes usu-
ally notice the teacher’s degree of seriousness in different situations.
Many can also separate teacher and subject, but not all. Some like a sub-
ject but do not have much sympathy for the teacher, for others it can be
the other way around. A 16-year-old who had difficulty in mathematics
said of his teacher, “NN is all right, but he has the subject against him.”

Perhaps mathematics teaching has an important task just in this
phase of puberty, when the pupils often have to fight so hard to reach
objectivity. If one can relate stories from the pupils’ own early years in
school. or from other childrens’ first vears, it usually gets a good hearing:
tcen-agers can recognize very much ol themselves in a probILm sttuation
which they have on another level than the voung child, without feeling

pointed out.

i GENETICTEACHING lzm*

How wishful thinking can lead o mistakes comes forth quite
nicely in the story of an episode which occurred during the registration
of a girl who was to begin first grade the coming spring. She and her
mother sat together with the teacher-to-be. After a while the teacher
wished to feel out the girl’s abilities in arithmetic a little bit. He said:
“Five soldicrs stand guard by a road. How many guards are left if four
g0 away?” .

The girl thought a minute, then answered “two.” The mother paled
and looked worried. The teacher could not have considered the answer as
any great failure, but the mother later asked her daughter, how could she
say “two”? “Why, mama, you know I fclt so sorry that thc soldier would
have to stand all alone that I said two.” '

The emotions weigh heavily in the 14-16 ycar-old, making it diffi-
cult for many students to want to think about a problem. They would
like to recognize the problem and be able to solve it without effort using
some method they already know. Yet it is just precisely the unusual
problems which would jolt the pupils out of their routine and infuse the
power of will into their thinking. A few motivational words from the
“grassroots’ level” on why we take the time to solve a particular typc of
problem usually fall on good earth, because youth have a sense for any
training which concerns thcm existentially, which might mean somcthmg
for them even after leaving school.

7.3 Genetic Teaching

There are schools where so-called generic teaching has been widely
practiced. I am thinking of Martin Wagenschein, who in a number of

»pub]icuions emphasizes the importance, even the necessity, of a

“genetic” teaching where pupils — sometimes with a litde help from the
teacher if needed — out of their own activity solve problems from the
start by building up experience of simple, but in the given context,
appropriate examples (see carlier sections on the importance of examples:
3.5.1-3.5.4 and Chapter 4). Wagenschein describes a project on the ques-
ton, Are there infinitely many prime numbers?” Thirteen boys and
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irls from differer i ie : i i
24 ent countries, between the ages of 14 and 17, who studied:

at a S\VI‘SS “free” school were asked, without special prerequisites or
preparation, to take on the prime number problem which Eu:I?d‘ so‘clc-f
: gantly sol\.'ed. Is the number of prime numbers infinite? The grloup used
five 60-minute periods to accomplish the task. Their logb&;k lookeds

briefly like this: '

—I'hc ﬁlSt IL<SO .
L N Wg 1 o f il
’ ’IS.nCCdCd fO [he Dl‘OUp to bCCOn]C COTr P]C[Cl\,’ f‘ﬂnlllﬂr
\Vith th& questlon. '

The second le f i ’ '
¢ second lesson was used for a discussion and investigation as to
whether : ;
2) 2n + | 1s a prime number generator
b) 6n - - 6n - 1 i
)6n + 1 or 6n - 1 always gives a prime number

prime number always have the form 6n + [ or é6n - 1?

rr|4 . . . . " ’
he [bl’.n.j hour: Discussion of the concepts necessary and sufficient con-
ditions was absolutely necessary! Starting point in simple examples

such as: Are all inhabitants of Switzerland Bernese (i.c. from Bern)?
Are all inhabitants of Bern Swiss?

Continued discussion of the problems connected with 6n # 1, it
\ : . ; . . - ;
vas a matter of making sure that all in the group fully understood %
the progress that had been made.

Fourt ine: 1 :
rth meeting: The pupils were asked to write down all the results they

hnld come UP \V]th SO f:ll. Olle 1 was JJ]C[](J” at ] C ¢ Jl bu[ :
g]r P ¥ t ._‘O ol

did not succeed i - ' I
ed 1n ‘
fid not st . .foimu.lafmg the analysis of two cases which
§ ¢ key point in Euchd’s proof; at least she did not succeed in
making her own insight understandable to the others. ﬂ

The fi.fth hour was wholly directed toward the final formulation. The girl

. m.question later wrote a letter in which she said, :4mo.no otier
.things: “When we after several days had solved the problzm we
were so proud, as if the prime number problem had tormeme;i us
our whole lives and we were the first to find the proof.”

Pride ought certai '

1 t > bs Y g . - X

e e '8 .ur.mmly not be the go‘a] in itsell, butif we look at the
} } e lt ns citation we see that 1t expresses sansfaction over that
‘hich one h: aelNioves - N . ) ) O
ich one has achieved through his own work and effort.
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To use an analogy: there is a difference between reaching the top of
a mountain by car and getting there on foot.

The feeling of the joy of working is not casily found for a pupil
with difficulties in the subject. If the evaluation of work in mathematics
is primarily based upon written tests, then some pupils can feel pre-des-
tined to getting less encouraging evaluations. The method used through-
out the Waldorf schools where each pupil keeps his own workbook can
be of great help: for some in the class it is considerably easicr to sit in
peace and quict at home and think through course material, and they can
present it in an individual way, even in mathematics, where the opportu-
nity for personal ideas in the subject must be limited'in comparison with
orientation subjects. As pointed out in Section 6.1, the opportunitics for
individual contribution are greater to the same extent that the mathemat-
ics lesson includes elements of orientation.

The keeping of workbooks as a rule gives a kind of satisfaction
over seeing a finished job, which stimulates continued efforts. But what
school can afford to give five whole hours to the solution of a problem
like Euclid's theorem on prime numbers, when in addition the result
leads to no practical application? In what kind of school can genectic
teaching find its rightful place, regardless of how appealing it may seem?

Perhaps it can be included, despite the above, to some extent; or
more than is found in our schools today. The time is well spent if 1t 1s
used as suggested by Wagenschein’s examples. The student group famil-
‘arized themselves with the problem, put down some simple “theories”
in the beginning and were motivated to test them out. After a number of
trics down paths which were not successful, thev eventually found the
right track. It does not matter that “tips” or “hints” from the teacher
may be necessary. During the actual secking the group felt the need to
study the concepts of “necessary” and “sufficient” conditions, concepts
which are of great importance in mathemartics. v

Finally, the group did the work of formulating the proof. Doesn’t
such work often give significantly more for the time than time spent on.
routine tasks? It ought to be possible to select a few suitable course cle-
ments for such a genetic study. ,

Another counter argument worth considering 1s: will not genetic
education activate va'imarily those pupils who arc already bright?
Perhaps some of the pupils will end up being more or less spectators?
This risk exists, and it is up to the teacher to conrribute to sumulating
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cveryone. Genetic lessons often require more preparation than other '
forms of work. for the teacher as well as for the class (not least socially).
The brightest pupils must develop a sensitivity for the social, more than
‘1 normal forms of work, so that they don’t speak out too early, unasked
by the class, and take away their classmates’ joy of discovery on their
own. When social relations begin running smoothly, the group work can
be organized so that some pupils become “assistants” to others. Those
who are the helpers will certainly come to experience that theyv them-
selves understand the results better when they are in the position of
answering questions from their friends and giving them helptul hints.
Even the act of understanding what a question means can be worthwhile

for memorizing medhods of solution.

. i e e K » . . 3 N H 3
school vears. In the higher grades this pupil, for better or worse, went in 4,.

Other pupils who had not shown themselves active in the lower
grades, succeeded in coming more into their own in their later school
vears. Through suitable choice of problems the teacher can entice ideas
out of pupils who usually do not express themselves so much. Faced
with unfamiliar, perhaps surprising problc}ns, “clever™ pupils often look
for a rule or other knowledge in memory, while less advanced youth tend

more to usc their “common sense” to find an opening for the problem
solution.

exercise.

74 On Kinds of Abilities

I have already mentioned (Section 6.3) the occurrence of different
kinds of talents for languages and mathematics. Included in point 3 above
— knowing the individual pupil — 1s developing as quickly as possible a
picture of his or her prerequisites for the subject. Just as there are pupils
with an aptitude for language or mathematics, it sometimes occurs that a
pupil has a tlent for arithmetic or geometry. Most mathematically tal-
ented pupils find both of these branches easy, but in individual cases a
pupil with good aputude for geometry can have difficulties in work with
numbers. This indicates that arithmetic and geometry direct themselves
to different fields of ability, just as, for example. language and geometry.

In an eighth grade class one of the pupils was called “professor.”
This honorable title had been given to him after a number of prominent
contributions in arithmetic calculation, and I was naturally interested to
follow his further development. It turned our the next year in ninth
grade, where the problems more so than carlier appealed to individual
{nitiative, that the “professor”™ quite often asked for “hints.” His abilivy
had mainly been of a reproducing, receptive kind and no great source of

heuristie, mductive thinking was Lo spring up dunsg his remarmag
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ANSWERS AND EXPLANATIONS
TOTHE EXERCISES

9.1 Exercises in Section 3.1.8

I. a) 734 and 12059 written in Egyptian hieroglyphic:

I eeee it
""" see ™ man £

Il

b) written in cuneiforn:

734=1-600+2-60+1-10+4-1

QAERY

12059 = 3 - 3600 + a remainder of 1259
1259 = 2 - 600 + a remainder of 59
39=5-10+9

which is represented

which is represented

o (¢ OO

{{ v

i) 39= 1240125+ 2-5+4-1)
by 150 = 1122,

EXNERCISESINSECTION 3.1 8 P9

CoTUS 24 - 625 + remainder 170 *
172 =1-125 4 remainder 43 ' '
45 = i+ 25 + remainder 20 '
20=4:5+0

from which we get 795 = 11140,

3. Yes, every natural number can be uniquely represented in the
basc-5-svstem. For example, to count an unknown number of buttons
with the help of the base-5-system we arrange the buttons in piles of five.
If doing this gives 3 buttons left over, then the last digit of the number
must be 3. If no buttons are left, this digit must be zero. If the number of
buttons is less than 25, the 5-position 1s determined by the number of
piles. If there are 25 buttons or more, we arrange the fives-piles into
groups. ¢ach containing 5 five-piles. The number of five-piles left over
from the groups then gives the 5-position digit. And. so forth. This repre-

sentation is unique,

4.2) 34,219 b) 230, =65 <) 304,=79 W
dY 10110, = 22 (16+ 4 + 2) ¢) 11011, =27

5. The 5-svstem multiplication rable:

t o 1 2 3 4
o}, 0 0 0 0 9
1 . o 1 2 3 4
2 0 2 4 11 13
3 0 3 11 14 22
4 0 4 13 22 31

6, a0 114, {16 + 18 = 34) b) 111, <) 111,21 -6=15)
dY 1111, (5 -3 =15)

7. Thesumits 10;010a=2 + £+ =2.25

1
4

S, Each new chord is to be drawn so that it cuts all previous chords

in new intersections (otherwise the number of areas will not be maximal).
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I“ldolne tha[ we l)e I to dan Il ¢ >\ } ](l. eacn time it comes
‘4 =4 g " ew Cho 1
{0 an (zdlllel ChOld W ave )[‘l“lL(l 1¢ SN i ¢ s{ing area 1s
¢ h OL ' a new area, stnce an exi ‘ at
o

[
o

dl\ lded 1Imnto two PAI - S
ts O(d hen w¢e arriv A\ <
. ve fh‘l.‘“ at [hc C]rC}(.‘ S dOC C
' 'thL_l}lSt nexw area. ‘ )
. ,r,he ]
. cr Of new areas 1s '(hUS = t}]c’ nUIanI Of Old (.hol dS -+ l

the new number of chords.

No chords gives 1 area’
1 chord gives 1+ 1areas

l2chords give . 1+ 1+ 2areas
3 c:ords give 1+1+2+3areas, etc.
n chords  give nin+l
g 1+1+2+3+...+n=1+ ——(—»-;—»A—)-nrcas.

9. .. . .
s Beimmng with the second, each figure can be divided up into a
| . ‘ ' ) R a
lqU"uc nurnber plus a triangle number. If k,. k,, ki, and t,. ts, t are
the successive i epectivel on we get ¢
sive square and triangle numbers respectively, then we get the

O“O S < < N . y e
( i 1€ eXpr
f \Vlllg 1 “p e p c¢ss1ons fOr tlle peln l._’c()“ 11 “Ul“bClS 1] t t\

f;

H]

12
1-2
2

k, +t, =2+

f;=k3+t2=3-’+ _2__._}_ , etc.

The " : i |
general formula, according to Section 3.1.5 then becomes

fo=k,+t.., for n=1,2,3,... (with ¢, = 0)

f‘=nz+(_n—1)n |
, 2N o f,=3n"-1 - 3
3 ¢ > .n=1,2

from which

10, All bers ge
, : t.he numbers generated by the polynomial x* + x+ 41 (x =0
1,2, ...} land in the corners of tl i Thi ‘ -
S ) rners of the spiral square. This is because the num
of steps : - { \ e ]
_ teps trom one corner to the next following corner f S

B O A orner ‘ ol g corner forms the
sedpence 2,4,6, 8, .., which ts identical to the tnerease in the polynonmial

'n xincreases by 1t o |

=

from which it follows that the wicrease 1s 2,4, 6,

possible.” (The avenues run downward to

:2(\'11)

(x + 1)+ (x+ )4+ 41 ~{xT+ x 41y = 2x 4
Cforx=0,1,2, ...

9.2 Answers and Explanations to the Exercises in
Section 3.2.8

1. The ordering principle for the 10 paths in Figure 3.2.2 s
«“Take an avenue as early as possible and proceed along it as far as
the right, see Figure 3.2.1 and

corresponding text).
If one wishes, the different paths can be characterized by letter

codes. To that end we let an «2” stand for onc block length along an

avenue (anvwhere) and a «,” for the same anywhere along a boulevard.
Path no. 1 can then be denoted by the code aaabb. (One goes
fiest 3 blocks along an avenue and then 2 blocks along a boulevard.)

Path no. 2 1s aabab.
One can in fact, without looking at Figure 3.2.2., note down ali
possible paths by letting the letter combination
aaabb

take on all nine of its successors in alphabetical order, (There are to be 3
45 and 2 b’s in each combination.)

The sequence then becomes:

1. aaabb 6. abbaa

2. aabab 7. baaab

3. aabba 8. baaba

4. abaab 9. babaa

5 ababa 12 bbaaa

2. According to Section 3.2.4 we have

(1 +x)" = (‘(‘))1“ + (‘;)1”'1_.\' + (;)1"-2‘\'2 4oL (2)x“
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Since all powers of 1 are | we can simply write

(1 + x)“:(g)+ {“}x+ (r;}\'3+..,+ (’r‘]}x"

1)
X = ety o = (n) 4 (N} 4 [0Ye o+ (D
= tnamsnes 2 =(3) (1) (3} )
The sums of the binomial cocfficicms in the rows of Pascal’s trian-
cle thus form the sequence 1,2, 4,8, 16, ctc.
3. Seven people can be seated in 71 =7 - 6 5-4-3-2-1=5040
different ways along the side of a table.
4. (7) =7 654 35 committee combinauons.
4l 43201
The formula n S L
(k) k! (n-k)!
. ( n )= fn! - __nt ___(n)
wives n-k!' (n-k'in-(n-ky (n- k)t k! 'k

6. Number of chords = number of connecting lines berween pairs
of points
= number of ways to choose pairs
= number of ways to choose 2 points out of

10 points
- 10-9 _ 45
2-1i
o 12 - - 10
7. Number of tnangles (12) = —-—————- = 220
3 3.2-1

8. a) The number of letter groupings{ pCrmutations) is
5i=5-4-3-2-1=120
6) The number of permutations with repetition allowed i

5% =5-5-5:5-5= 3125

F.XERCISE. SINSECTION 3.3.7 1273

9 We call the 200 tries the thief makes a trial series. We know: from
Section 3.2.7 that each try can be done in 1024 ways, of which 1023 wil
not suceeed in opening the lock. 200 tries made randomly each ume (so
that any given try combination may be repeated one or more times) leads
to

1024** possible tries

among which 10237 are unsuccessful trial series.
The possibility that the thief is unsuccessful in 200 attemipts is thus

_ ( 1023 )2°°
1024

The desired risk is the probabilitv that the thief succeeds. which is

the complementary possibility of s, i.c. 1-s. One obrains s = £.822 which

gives 1-s = 0.175. The risk sought after is therefore about 18%. Compare

this with the risk of succeeding in 200 different tries,

200 ~0.195=195% -
102+ ° A%

9.3 Answers and Explanations to the Exercises in
Scction 3.3.7

. Yes, the drone’s family tree produces Fibonacci numbers genera-
tion aftcr gencration. This follows from the fact that the family tree pattern

'

corresponds exactly ta the rabbit pair chronology (with time runn:{

vertically upward):
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newborn pair

original pair
1

1
sexually mature pair

newborn patr

. 1f we draw Figure 3.3.18b with a large scale and draw carefully,
we tmd a narrow but obvious gap (spnc) between the top pieces (A + D)

and the bottom picces (B + C). The gap’s shape s a p.lanlo\'r.un and the
The area A + B + C + D thus remains the same as in
“catch.” FHow could this be discov-

area is exactly r',
Figure 3.3.18a, 441", The gap is the
ered without drawing?

3. One first obtains
f4=8+ 152.23,&: 15+23 =38,...
f, =259 and f,, =419..

fo ~ 259 ~ 06181 ~0.618

;\"cxl‘, —
fi1o0. 419
+. \Y/C h‘.'l\'C Vn+l = f'“’l —_ flH‘l e = 1_. = l .
fn+2 fn+l + t, 1 + -._f_'.L. 1 + vy

If the sequence {v,} is assumed to have a limiting value x, then the
recursive formula : |

Vsl = b
I + va

leads to the fact that the limit x must satisfy the equation

x = -t

I + x

The limit must also be positive. The positive root of the equation

aboveis preasely

ENERCISESINSECTION 3.3.7 1275

5. The proof is based on the following three poOiNts:

1) A monotonic decreasing sequence with a lower bound has a
limit. This is an important theorem which we do not prove here.

2) vi = 1.G (whose value 1s 0.618...)

—

2+ v,
Relation 3) comes from the recursion formula we used above in
Exercise 4:

1

1 4+ Vsl

Va2 = in which we purt v = 1+ v
811
with odd index form a mono-

We now show that the numbers v,
¢ bounded by zero, these

tonically decreasing sequence. Since they ar
numbers must have a limiting value, say A.
From 3) follows

=t

arvesl o C k(v vy -1) (4)

Vi = Vipe2 =

where k, 1s positive

SR

H v, >Gwehavev, - v, >k (G +G-1)=0 (see Section 3.3.5)

thatis v, > v,
In an analogous fashion we can show thatv, ., > G (if v, > G).

> G

1n other words, 2) implies that v, > vy > v, >
If v, <G we getinstead, using the corresponding argument, that

vo<y, <G

n
Since v, = % we musthave vy <v,<v, <... <G
Applving 1) means that this sequence {v.,} too must havea limiting
value, say B. Both limits A and B must according to relation 3) satisfy the

following equation




276 ENERCISES AND EXPLANATIONS

This cquation gives x* + x = 1, i.e. has G as its positive root. We
have thereby shown not only that the sequence {v,} converges to G bur
also that the numbers with odd index decrease toward G while numbers

with even index increase toward G.

If we represent the recursive relation  Vaer = —
1 + va
graphically in x-y-coordinates with the aid of thecurve vy = I
) I+ x
and the line y = x,
we get a picture of the convergence process (sce the figure).
y = x 6. Starting with F, = a and
F,=b gives
F,=a+b
F,=a+2b
F,=2a+3b
F,=3a+5b
ete :
- We see that the F-numbers
. o X take the form
0.5 1 ; .
F,=f.+f. " (fornz3)
where f, =1,f,=1,f,=2,f,=3,f,=5 etc, are the “original” Fibonacci .

numbers we became acquainted with in Section 3.3.2.

a) We get Fio=21a+34b

bYIf welet vo= Fa , we get the same recursion formula
n+l as in Exercise 5, namely
1 + vy

and the proof that the sequence {v Jeonverges to G works analogoushy e

the proof in Exercise 5. From this it follows that the lienit is independent

of aand b,

EXERCISES INSECTION 3.3.7 1277

7 We consider the second of the two given sequences,

G, 1,4,
G

2

G-

From Section 3.3.5, equation (2), we know that G satisfies

G+G=1 (2)
If we divide this equation by G we get
G+1=2L (3)
b

If we again divide by G we get

{ + i - _.l__
and thereafter in similar fashion L+ 1, = 1‘ and so on. (3)
' G G- G

ations (3), (4), (3) etc., show that the sequence with G. 1, %,
here-

The equ

%, .. .is a Fibonacei sequence with starting values G and 1. It must ¢
fore be identical to the sequence G, 1. G+ 1, ...

8. If the regularity continues infinitely, then it can be expressed

fo . o={+f; fornz2 (1a)

n

f..=f_.,-f,, fornz2

-0
The proof is by induction: we know that the above applies for f;
and f, (n = 2). Assume that the formula applies forn=p.
We then gettorn=p + 1

Jp-t oy Ten ﬂ,nd (lb)

ST S Y R S SN

(1b)

)

T by definition and according to (ta) -
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In other words, the regularitv also holds for f,,.,.
It remains to be shown for t. .. .

f;;-.._‘ = fzpq + f_’,p = (f::q + ff) + (féu - f;l»-l)
= Zf;q + ff\ - f;l
= 26000 4 7 - (fer -

fo)

e . .
=toa + —‘t;wlfp-

From f"\.: = f

. + f it follows (after squaring and rearranging
items) that

pet

2fp+]fp = fi:"l

- Bl
- fper - R
Putting this expression into equality (2) now gives
.Y .Y
fzp-_\ =th.2 -ty N

and thereby the applicability of (1b) is shown even forn=p + 1.

) Since the equalities (1) and (1b) apply for n = 2 they must accord-
ing to the above also apply for n = 3, for the same reason also for n = 4
ete. In other words, they must hold for all values of n. ’

9.4 Answers and Explanations to the Exercises in

Section 3.4.7

1. The fourth term is 8.2, the tifth 10.6.

2. The fourth numberis 12,

5
gy~ .o . 7 N N
Ihe fifth term is 0488 . 32.76%
3
30 Alter 3 tollaws 3 b =15

ENFEROINEST
Afrer thatcomes ©
4. The angle of the sixth swing s =
15
6. The hight yemaining is 0.95°L where

incoming light. The percentage of light lost 1s

100 - (1 -0.95) = 18.5%.

7. The plot shows a discontinuity between 1910 and 1920
shown p‘.ottcd below in a semi-log diagram.

4 Mill. Inhab.
300

200

Le—p Year

1950 1970

v 33888

1850 1900 1917!

95 Answers and Explanations to the Exercises in
Scction 3.5.3
d=10D-2u

.D-d=2y D=d+ 2,

NOSEOCTEON SRR

[ is the intensity of

=Dd

2
J
Z

15 (‘3) =157 0.8 = 4.9

the

This

comes from the Russian Revolution in 1917. The population growth s

&L
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_ Yes, the numbers which turn up there are identical with the
numbcrs in Pascal’s triangle (if we put a 1 at the top). Let us look at the

case with 4 numbers to begin with: a, b, ¢, and d.

Starting point  Ia b lc 1d
We gert first la+ 1b b+ tc lc + Id
Next comes " la+2b+lc Ib+2c+1d

from the addition

1 1
i 1
i 2 I
And finally we get 1a + 3b + 3¢+ 1d
from adding
1 2 1
1 2 1
1 3 3 1

1
1 1
i 2 1
1 3 3 1
3. No, because if the square were | a b
' ’ C d
then the following would hold:
a+b=a+c=a+d
from which it follows that b=c¢c and c=d.

i i SEE e W ]
In other words, the numbers would not be different. We would

find instead that

ENXNERCISESINSECTION 3.5.8 1281

4. We found in Section 3.5.4 that three consceutive integers give .'1*
sum which is divisible by 3. If the “middle” number is n, then the sum

will be

sy={n-1)+n+(n+1)=3n.

1f we take four consecutive numbers, there is no “middle” numbcr,
but if we let the second number be n, then the sum will be

ikhase

s,=(n-D+n+(n+1)+(n+2)=4n+2

These sums are not evenly divisible by 4 (there is a remainder of 2).
Taking 5 numbers in a row we get

ss=(n-2)+(n-1)+n+(n +A1)+(n+2)_=5n

which tells us these sums arc all divisible by 5.
It is now not difficult to sce the following general result:

1) when n is odd, the sum is divisible by n.
23 when nis even, sav n = 2p, the sum gives a remainder of p,
when divided by 2p }’

5. Let E represent an even number, T any number divisible by 3 .
and S anv number divisible by both 2 and 3, i.e. divisible by 6. Finally, lct
O stand for an odd number which is not divisible by 3. Prime numbers
greater than 3 can be found only among the O-numbers. Beginning with
T, the \Lqumcc of mtuml numbus can bg written in the following struc-

tured we,

(4) (3) (6) ... (12)...
T E O S O E T E O S OFE T.

The period SOETEQO repeats endlessly because

1" Every other number is even
2 Every third number is divisible by 3
3 Everv sixth number is divisible by 6

The O-numbers therefore always lie adjacent to the S-numbers. ‘
\We have thereby shown that every prime number greater than 3
can be written in the form 6n + 1 or 6n - I, where n is a natural number.
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6. According to Exercise 5 the
the form 6n.+ 1 or én - I.

\# _ Then we get

P+ 2= (6n + 1Y +2=36n + 12

prime numbers can all be written in .

Assume that pP=6n+1, for some integer n.

n+3=3(1.’n-‘+4n+])

from which it is seen that the number is divisible by 3,

“'.‘ St — N
instead p = 6n - 1, we get analogously
P =2=3(12n"-4n 4 1)
and conclude as before that the number iy Jdivisible by 3,

7. We suppose that the formula
Vo ,
I'+2'+3 +.. 4+ n'= (] + 243+ ..+ )
holds for n = some natural number p.
Vo k hewi
We know, to begin-with, that the

formula holds for n =
‘ 1w : storn =1 (we hav
of course, also checked it for ( e

a few other values of n). Doe

s it hold now

forn =
that the right hand side

. ..
fe =P + 12 We need to utilize the knowledge
i the formula above can also be written :

< { L(g_tl_.)_/l" or  Ini(nen)?

y } ™)

We car ite, addi d
1 now write, adding (p+1)' to both sides.

LA

343 3 3 . ll 3
I+ 2 +...+p -r(p+1) :p_.(i*-_) (P*’l)"

We must now show that the right hand side can be written as

.{I +Z+...+p+(p+l)}".
The right hn_nd side can be written
‘)'*‘] : ’
(—}—-~—)~ fp' +4Hp+1))

. (p: +4p + 4)
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Comparison with formula (*) above shows that this expression s
precisely
AL+ 24+ o+ p o (pr D))
We have thus shown thac if the formula for the sum of cubes is
true for n = p, then it is also true for n = p + 1, i.c,, for the next higher
value of n. Since the formula holds for n = 1. it must hold for n = 2, thus

even for n = 3, and we have hereby proven the formula for all natural
numbers n. ‘

8. We let x be the amount of copper to be added. The equation for x
will then be

0.6 +x=0.7(14+x)

L ke
7 ks

which gives X o=

9.6 Answers and Explanations to the Exercises in
Section 3.6.4

o

1. The Danes own 2/7 of 50% = approximately 14.3% of Linjeflve.
pp ) Jetiyy

[AS]

A
[LURRYSIN

. The increase was 24,000 crowns, which is 4 - 6300 or

3. Since 0.5% 1s 1/200, one must mine 280 tons of ore to get 1 ton
of copper.

4. Letting p be the original price, the price after the 2320 increase is
1.25 p crowns. The discount down-to the original price wili be 0.25 p

crowns which as percentage becomes

9:25p 00 = 20%.
1.25p
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5. The 50% decrease means a halving of the contribution. The
100% increase means a doubling, so the school contribution ends up at

the original level.

6. 1f we assume for simplicity’s sake that the bones are circular in

cross section, then the radius must be enough larger to muluply the area

by a factor of 8. The radius must, therefore, be multiplied up by a factor
- . .
V'S or approximately 2.8 times larger.

7. Average speed = total distance / total ume.

10 .20+ 39 . 15 = 82 qnautical miles.
60 60 6

10 + 30 min = 2/3 hour.

o

Total distance =

Total ume =

(¥

65/6 _ 63

2/3 6 -

16.25 = 16 knots.

Il
u

Average speed is thus

NI

8. Let a be the distance travelled outbound in kilometers. We call
the airplane in the problem airplane A. A’s average speed is the same as
the constant speed which another airplane B would need to hold in order
to fly the same distance (out and back) in the same time as it took for A.

Let x be A’s average velocity = B's constant velocity, '

A’s travel imeis 23— + —  hours.
800 1000
B’s travel tume is 23 hours.
X
2a - _a_4 _a

X 800 1000
The travel times are to be the same, which gives the equation

The fact thata can be divided out of the equation shows that the
answer is not dependent on the distance.

We oot R 4
bl
0C0

.
4.

H e \4 t o 3
rom ahich we PRt N = ':_,J_O_.‘). = 8§89 k”]/hUUf.
]

1w
K
)
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9.7 Answers and Explanations to Section 3.7.3

1. Figure 9.7.1 shows that the cube has 11 different networks. These
arc ordered systematically: in the first row we have the 6 networks which
have 4 squares in a row. In the sccond row are the four nerworks with 3
squares in a_row. The cleventh network is the only one where no more
than 2 squares lic in a row. The tetrahedron has only 2 possible networks.

17 (- . E ;'. | '.‘—] ]
.-.— L - . _0.- L] <
-0_4 ;“ . J * ,_;t ..‘_—._J
- L | 4 ' () ]
| B —
. - 14 -1 .
C1 G -]+ -1 ]
—
: : Figure 9.7.1
L]

~N

. Finding eight corner points for the cube should not be difficult.

3. 5¢e Figure 9.7.2.

4, Sce Figure 9.7.3.

Figure 9.7.2 Figure 9.7.3
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I‘)é;:r‘t‘ 9.7.4
5 The mer , . . Frgare 9.7.5
twork for the solid with octagons and triangles is
construct when one knows how to i b an octagon in & st o
et W en .s] ow to inscribe an octagon in a <qu-1r0'-onc
NS quarter circles with ¢ S X ' the sq
| - . enters at the corne
ot @ : corners of the square
: adius equal to half the d ’ T
e e ro ! diagonal of the square. The square has a
. e edge length chosen for the cube. Sce Figure 9.7.4
e nerwor 2 soli i § o
Th ork for the sohd with hexavons and s 'S 1S
cult to find, since one must first fi e o b more ity
¢ , S o1 e 3 1
orm thees igores 1o iy firs ;:,;lfxc out the length of the sides which
cquarc's dngont o oo o, oo di 1(.u‘lt to see in Figure 3.7.8 that the
Ttare’s ding f). tg. q‘u:ll. to alf of the side of the cube (see Figure 9.7.5)
! or ~ . von-
is solid is noticeably smaller than that for the octagon-

triangle solid. This is

. . This 1s because we ar ind;

. ¢ are . .

time. grinding down the solid the whole

9.8 Answ¢ . .
. swers and Ex ati i
, rs and Explanations to Section 3.4.3

. Sce Fig ST

- izure 9.8.1. The thre :
o & EONEN CULNTee CUrves corres e

-y 3 S Corresps PO - <

253 mm respectively, rrespond to NY = 5013, and

INEROISES IN GECTION 3.8.3 1IN

Figroe 9.8.1

Y

hape of the curve for large XY val- .
so-called proportional form reduc-
¢ has a point X belonging to line
The distance PX and PY are

2. In order to get an idea of the s
ues, we reduce the figurc in size using
tion with P as the fixed point: each p-lin
a and a point Y belonging to the curve.
reduced to such a scale that the distance bet
for example 25 mm. In this type of reduction (propor
and forms are unchanged,.e., line a becomes a ne
is closer to P and parallel to a. The curve too (the locus of poin

he same time as it moves nearer to P

maintain its shape att
For large values of the distance XY, a’ will lie very close to

example, XY = | meter the reduction scale must be 1:40, which means

hat D lies 40 times closer to a’ than a.

We may now with the same effect imagine
hile we take XY to be 25 mm. Figure 9.8.2
for the cases where P s at distances 5 mm

ween the new points, XY s
tional form) all
shapes w line a” which

ts Y) wili

P, For

line a 1o be fixed and let

P be drawn in toward a w
shows the shape of the curve
and 1 mm from a, rcspccti\'cly.

I‘l‘g wre 9.2

_ iLis now not difficult to sce that Figure 9.8.3 with its half-circle (or
radius 25 mm) shows the limiting form of the family of curves as P s
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moved in toward a. To give a strict proof requires both care and: “rech-
mque,” the latter at university level.

*—_—m.ﬁ—-————___—_-.—.ra-—g—.m

Frgrore 9.8.3 D 3

3. See Figure 9.8.4.

L N
/ N

/"l.g‘ e V.84 / \

P Sy S S WA G

4. The 9 sub-figures in Figure 9.8.5 show the typical stages of the
transformation. In (1) the three circles coincide but begin to move out-
ward away from ecach other, Each circle’s center follows its triangle
“height” hine (from the base at right angles up to the vertex) in the direc-
tion away from the vertex where the height line begins.

White region: not covered by any circle
Horizonully shaded regions: covered by 1 circle
Cross-hatched regions: covered by 2 circles
Dotted regions: covered by all 3 circles

In drawing (7) the circle radii have become infinitely large. In (8)
the circles’ tnner regions lie “outside” the edge of the circle, in the sense
that we used in Chapter 3.8. Drawing (9) shows a stage where we come
back to (1) as far as form s concerned, but (9) and (1) are each other’s
opposites with regard 1o shading. It would take 9 more stages before we
would truly come back to our starting point.

5. With reference to Figure 3.8.14 we let A and B be two given
points and ¥ a fixed proportional ratie between the distance from a point

N onthe curve to A and B respectively:

NB .

Ay
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£
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In Figur ‘ ‘
- gure 9.8.6 below XP is d
‘ AB> Yy . ; 1s drawn as a bisector i s tri 9 The distance is s (151-18) - L11.1 - cos 34%=12.230 km.
X. XQ is the bisector of the anele BX ctor in the triangle ¢ ( 8)
angle BXr, where r s the exrension of.

. 1S usually called the « : )
o e o\ - ” R A -
external” bisector. According 3. The best answers are

_zCalled Theorem of Bisectors and its corr ] to the so-
v ‘o : ' cspondence for external Bicee . _ . 5 o
tors, we have pondence for external bisec- a) npproxmmtcly 9700 km (the angular difference 1s 877)
PB : b) approximately 12,500 km (angular difference 1 13°)
~Z = F B _ . , - o
PA and NP p 9 The solution to b) is illustrated in Figure 9.9.1 below.
QA (4 g

N

X r
. P
:\ a
40°
. _7

Figure 9.8.6°
( If we now le ' .

(1). In addition tLht $ m?vel;)t(hen Pand Q will be fixed points because of

c e , ¢ angle is . PCAUSC « :
half of 180°). Q is, and always remains, a right angle (= 5 \ Figure 9.9.1

The conclusi
dinmcm'r‘ conclusion must now be that X describes a circle with PO as a
' A 4 Because 106° + 76° = 180° it happens that New York and Hanos
lic on a great circle which goes through the Poles. The shortest distance
passcs through the North Pole (first toward the North. then southward)

and the distance is

[(90 - 41) + (90 - 21)] - 111.1 = 13008 km.

5 Somewhere in the Southern Hemisphere there is a circle of lau-
ude whose length is exactly 1000 km. The starting point can be any-
where 1000 km north of that circle. The person may cven start 100C km

).) Ans [ :.Uld EX anation to SCC( on 3. .5

where n =11, 2, 3, 4, ctc.

1. The distance to the North Pole is (90-60) - 40000 ) : v' north of any circle of latitude whose length is
Sroce - . m, Or more ¥
gfr“‘}ﬁ’l(')(y.&?) 110 km 3300-kiiomete.,-s' . 360 y 9 1000 km,
. = 1¢ distance 1o the . ) . : n
'M',’_ZOO’km_ ce to the South Pole is approximately 2000-3320 =
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6. According to the formula for the area of a spherical triangle (see
Section 3.9.2) we get the equation

nR” (v . 180) = 0.25 - 4nR’
180

where R is the radius of the sphere. Solving, one gets V = 360°.

7. Letting X be the percentage we are looking for, we have

X. . 4xR?=2.27R (R sin 60° - R sin 30°)
100

from which x = 36.6%.

9.10 Answers and Explanations to Section 3.10.3

The symbol Ameans “perspective with” and d denotes Désargues’
line. '

1. We obtain A'PR i

\/ OBC and d=B'CQ
N f 2. OAB A C'RQ;d
b goes through A", B'and P

S N S\ 2 3.3) AAP A CC'Q;
ﬁ R is the center of perspec-
tive. .
< ' . .
b) The figure is
) self-dual: on cach line lie 3
points and through each
X

point go 3 lines. The state-

. ments to be shown are

~
\\ consequences of this fun-

damental symmetry.

EXERCISESINSECTION 3.10.3 129

4. In Figure 9.10.1, the sides of the quadrangle arc denoted by a, b, +
¢. and d, while the two diagonals are labelled ¢ and f. . g
The 3-sided polygon we are looking for is determined by the

points of intersection
axc, bxd and exf.

!

>//
/\”"\

D
Figure 9.10.2: , \

5. Corresponding
to three points X, Y, and
Z in Figure 9.10.2a arc
the three lines x, v, and z
in Figure 9.10.2b.

Z is an inner
point of the circular
arca in Figure 9.10.2a.
Analogously, z is an
inner line in the circle

envelope of lines
which surround the
circle in the b-figure.

X and Y are outer cle- /

ments, as are x and y.

r
6. Sce Figure 9,10.3 :
Figire .10

0, 1s the conier of perspective

7. See Figure 9.10.4
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Figure 2.10.4
Triangle ABC has vertex A as a point at infinity

M

9.11 Answers and Explanation to Section 3.11.8

. o .
I a) 21 pupils (if all those who were positive toward France were
also positive toward Germany). '

b) 5 pupils
c) 16 pupils ( = 25 + 21 - 30)

; 2. Assume for the sake of simplicity that the numbers of respon-
dents was 100. Let a, b, and ¢ represent the sets of respondents who have

P .
_confidence in A, B and C respectively. (These sets have common ele--

ments, as is clear from the problem statement.)
B \‘(/c- are to minimize the intersection of a, b, and ¢. The minimum
intersection of aand b is made up of 50 people (80 + 70 - 100). We now
.cé::\s much as possible of ¢ outside this interscction, which is 50 peo-

ENERCISESINSECTION 3. U AL

ple. The remaining 10 c-respondents must be part of the intersection ot a
and b. In other words, the inrersection of a. b, and ¢ must nctude at teast

iG people. The answer is 10%.

3. and 4. .
The diagrams for A" W B’ and (A M B)(and respectively for A" B’
and (A W B)") agree regardless of whether the sets overlap onc another
or not. The figures show A" B and A° ™ B when A overlaps B. Ttcan
be scen that these sets are identical with (A M B) and (A W B) respec-

uvely.

m
1]
i

444
by
}4-4-4

A A B = the coss-hatched area.

U B = the entive shaded area.
This corresponds to the area ontinde

This corresponds to the complement
of the remaining wnshaded
lens-shaped arca, ie. 1o (A M B)"

the cirles, e, to (A v Bl

5. Simply follow the rules of dualization.

6. Let f be the left hand side = x - (y +2)
and g be the right hand side=x - y+x - z

We must caleulate f and g for all possible combinations of the val-
ues O and 1 for  x, y and z and then show that f=yg.

The table can be condensed down to

X y z _ t ‘ B
0 arbitrary c e
1 0 0 ol c
1 other comb. e 1

Thus it is true that f = g.
The other identity can be verified with the table
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X 3 z f g
T , , then the easiest way is to sct u=t+h *
’ n n
2 other comb. 0 o 1 and consider the rato v -t
) : u-t
! arbitrary 1 1
. ) q The nunicrator can be rewritten
7. The table s _ T
L n-l a-2 n-3el a-1
X ¥ f o : (u-t) (U™ + U+ U™t + L+ )
o] o] N . . . .
o | 0 0 The limit we seek is equal to the long expression in parentheses on
1 ! the right, since the factor u - t can be divided out.
1 C I l o
> The limit h — 0, thatis,isu — t,1s
Jo 1 1 1 .
_ o . '+ '+ ...+t (nequal terms) =n
from which it is clear that f = g for all combinations of x and v. i
T 6. Let us assume that f(x) # 0 at some point t within the interval.

Since f (x) is continuous there must then be a subinterval where f (x) and
thus f (x)' is non-zero. Let & be the length of this closed subinterval and

m > 0 be the minimum value of f(x)’ on the subinrerval.

Then, since f (x)*is non-negative, we have . :
| : y
9.12 Answers and Explanations to Section 3.12.8 : ! f(x)dx2m -8>0
. ' ' ’ = 3
1. The average speed is 129 km/hour. ‘ . . . .. . Ry
which contradicts the given condition that f(x)dx = 0.
2. The voltage increases from 2.0 mV to 4.8 V; an increase of 2.8 V. -
The average rate of increase is 4—24——8—\%— = 0.64 V/mA. 7. a) One finds the primitive function
4m
2 3
F(x) = X- - X
2 52
3. The average speed is l—é(i'—s—-;‘-z—) = 10.4 m/s 22
-2 . ) :
4.5 -2 .‘ and obrains  F(1) - F(0) = 1.
. 6 .
(te+hf -8 (2t+h) - h
4. ; =" T =2t +h b) The area in question is
and the limitis 21, whenh = 0. ‘ ) S
. ' dx =32 - L =9 em?

< oy o R . 3 3
5. 1f one doesn't kaow the Binomial Theorem for development of . 4

the coetficiente of (t+ h),
‘ (The primitive function 1s x*/3.)
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8. The statement’s validity follows from the correspondence of
pairs below: :

]
W N -

»
R

9. The set of rational numbers a/b between 0 and | can be num-
bered in the following way (the list here shows the first 17 numbers):

4, L 3.

2

\

: L2304
5, 6 6 7 7 7 7

O]
N

é;
7

o
w'e

w o

3
5

o
(Y
BN I»—.‘
|

-

B e

The numbers are arranged in order of increasing denominator and
_ within each group in order of ingreasing numerator. Fractions such as %
and % % % are not included since they have the same value as a previously
counted rational number.

: 10. Letting O represent the choice of a left branch (seen from
below) and 1 be a choice to the right, then every path can be described by
an infinite sequence of zeroes and ones. Each path has a urique represen-
tation. _

We now copy Cantor’s diagonal proof and assume that the infinite
set of paths, represented as zero-one sequences, is countable. There
would then exist an infinitely long list containing all the sequences, for

example

. 1)  0001010...
2)  0110100...
3)  1010100...

4)  1001011...

We now form a sequence where

the tst digit # tst digit of 1):
the 2nd digit # 2nd digit of 2)
ete.

EY N SECTION Y

ossibly be on the list, W
we-abtain cannot pos“;lblv be on the list

sequence
The infinite * the list includes all sequences.

Assumpion tha

have contradicied our
{ore, uncountable.

The paths are, there
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